首页 | 本学科首页   官方微博 | 高级检索  
     


Detailed 3-D nuclear analysis of ITER blanket modules
Affiliation:1. University of Wisconsin-Madison, Madison, WI, USA;2. Sandia National Laboratories, Albuquerque, NM, USA;1. Department of Energy System Engineering, Seoul National University, Seoul, Republic of Korea;2. Center for Advance Research in Fusion Reactor Engineering, Seoul National University, Seoul, Republic of Korea;3. ITER Korea, National Fusion Research Institute, Daejeon, Republic of Korea;4. ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul-lez-Durance, France;1. Dipartimento Energia, Politecnico di Torino, I-10129 Torino, Italy;2. EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB, UK;3. Association EURATOM-TEKES, University of Helsinki, PO Box 64, 00560 Helsinki, Finland;4. Association EURATOM-MESCS, Reactor Physics Division, Jožef Stefan Institute, Ljubljana, Slovenia;5. Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome, Italy;1. Karlsruhe Institute of Technology, 76344, Karlsruhe, Germany;2. EURATOM/CCFE Fusion Association, Culham Science Centre Abingdon, Oxfordshire OX14 3DB, UK;1. Korea Atomic Research Institute, Daejeon, Republic of Korea;2. National Fusion Research Institute, Daejeon, Republic of Korea
Abstract:In ITER, the blanket modules (BM) are arranged around the plasma to provide thermal and nuclear shielding for the vacuum vessel (VV), magnets, and other components. As a part of the BM design process, nuclear analysis is required to determine the level of nuclear heating, helium production, and radiation damage in the BM. Additionally, nuclear heating in the VV is also important for assessing the BM design. We used the CAD based DAG-MCNP5 transport code to analyze detailed models inserted into a 40-degree partially homogenized ITER global model. The regions analyzed include BM01, the neutral beam injection (NB) region, and the upper port region. For BM01, the results show that He production meets the limit necessary for re-welding, and the VV heating behind BM01 is acceptable. For the NBI region, the VV nuclear heating behind the NB region exceeds the design limit by a factor of two. For the upper port region, the nuclear heating of the VV exceeds the design limit by up to 20%. The results presented in this work are being used to modify the BM design in the cases where limits are exceeded.
Keywords:MCNP  CAD  ITER  Blanket module
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号