首页 | 本学科首页   官方微博 | 高级检索  
     

冶金过程人工神经网络建模及其参数优化策略
引用本文:刘代飞,李劼,丁凤其. 冶金过程人工神经网络建模及其参数优化策略[J]. 矿冶工程, 2005, 25(6): 57-60
作者姓名:刘代飞  李劼  丁凤其
作者单位:中南大学,冶金科学与工程学院,湖南,长沙,410083;中南大学,冶金科学与工程学院,湖南,长沙,410083;中南大学,冶金科学与工程学院,湖南,长沙,410083
摘    要:鉴于人工神经(ANN)网络在处理复杂系统方面卓越的能力,采用人工神经网络来处理冶金过程的系统建模问题,分析并建立了人工神经网络建模的框架及应用方法。在用网络模型仿真实际系统的基础上,详细论述了基于网络模型的3种系统参数优化策略。将已建立的模型应用于冶金实际生产,结果表明,预测结果与实际生产数值相当吻合。

关 键 词:冶金过程  人工神经网络  遗传算法  建模  参数优化
文章编号:0253-6099(2005)06-0057-04
收稿时间:2005-06-11
修稿时间:2005-06-11

Metallurgical Processes Modeling and Parameter Optimization Based on Artificial Neural Network
LIU Dai-fei,LI Jie,DING Feng-qi. Metallurgical Processes Modeling and Parameter Optimization Based on Artificial Neural Network[J]. Mining and Metallurgical Engineering, 2005, 25(6): 57-60
Authors:LIU Dai-fei  LI Jie  DING Feng-qi
Affiliation:School of Metallurgical Science and Engineering, Central South University, Changsha 410083, Hunan, China
Abstract:Artificial neural network is used to deul with systematical modeling of metallurgical process, and the process frame and method of artificial neural network modeling are analysed and built due to its excellent ability to deal with mechanical complexity. On the basis of using network model to simuate actual system, 3 types of tactics for process parameter optimization are descibed in detail. The models have been applied in practical production. The results show that the predicted results are in agreemeut with the practical data.
Keywords:metallurgical processes   artificial neural network   genetic algorithm   modeling   parameter optimizing
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号