首页 | 本学科首页   官方微博 | 高级检索  
     

粗糙集及PSO优化BP网络的故障诊断研究
引用本文:吴伟,李楠,郭茂耘. 粗糙集及PSO优化BP网络的故障诊断研究[J]. 计算机科学, 2011, 38(11): 200-203
作者姓名:吴伟  李楠  郭茂耘
作者单位:重庆大学自动化学院 重庆400030
基金项目:中央高校基本科研业务费(CDJZR10170001)资助
摘    要:针对PP神经网络故障诊断存在网络结构复杂、训练时间长、精度不高的问题,将粗糙集、微粒群算法、遗传算法引入到柴油机故障诊断中,提出了基于粗糙集理论与改进PP神经网络相结合的柴油机故障诊断算法。算法采用自组织映射方法对连续属性离散化,利用粗糙集理论对特征参数进行属性约简,使用微粒群算法优化PP网络结构,从而缩短训练时间,有效提高故障诊断的准确度。最后用柴油机的实际诊断结果验证了该算法的可行性、快速性和准确性。

关 键 词:微粒群算法,遗传算法,BP神经网络,粗糙集理论,故障诊断

Fault Diagnosis Research by Rough Set Theory and the PSo-BP Neural Network
WU Wei,LI Nan,GUO Mao-yun. Fault Diagnosis Research by Rough Set Theory and the PSo-BP Neural Network[J]. Computer Science, 2011, 38(11): 200-203
Authors:WU Wei  LI Nan  GUO Mao-yun
Affiliation:WU Wei LI Nan GUO Mao-yun(College of Automation,Chongqing University,Chongqing 400030,China)
Abstract:For the imperfections of BP network fault diagnosis model, including the complexity of the network structure, the long time of training, and the low precision, this article introduced rough set(RS) , particle swarm optimization(PSO) and genetic algorithm(GA) into the diesel engine fault diagnosis, then proposed a new algorithm that is based on rough set theory and the improved 13P neural network. hhe algorithm uses self-organization mapping net(SOM) to discretize the continuous attributes, rough set theory to make a reduction on the properties for characteristic parameters,and the particle swarm optimization(PSO) to optimize the BP network structure,so that it can shorten training time and improve the accuracy of fault diagnosis effectively. Finally, the result of the diesel engine's diagnosis proves the fcasibilily, rapidity, veracity of the algorithm.
Keywords:Particle swarm optimization(PSO)    Genetic algorithm(GA)   BP neural network   Rough set(RS)    Fault diagnosis
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机科学》浏览原始摘要信息
点击此处可从《计算机科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号