首页 | 本学科首页   官方微博 | 高级检索  
     

TM和SAR遥感图象特征层融合分类方法的研究
引用本文:于秀兰 钱国蕙. TM和SAR遥感图象特征层融合分类方法的研究[J]. 高技术通讯, 1999, 9(6): 32-37
作者姓名:于秀兰 钱国蕙
作者单位:哈尔滨工业大学航天电子与光电工程系
摘    要:针对空间遥感TM图象和SAR图象信息的特征层融合应用于地物分类,提出了一种结合Markov随机场和BP神经网络模型的多源遥感图象迭代分类方法。该分类方法与现有的基于Markov模型的分类器相比具有无须假设条件概率密度函数模型的优点;与BP神经网络分类器相比,由于其考虑了类别标号的空间相关性,提高了分类精度;有别于传统的上下文分类器:它是通过迭代过程中来实现分类的,在考虑了类别标号的空间相关性的同时

关 键 词:多源遥感图象 分类 特征层融合 SAR TM

The Research of Classification Method of TM and SAR Image Character Level Fusion
Yu Xiulan,Qian Guohui,Jia Xiaoguang. The Research of Classification Method of TM and SAR Image Character Level Fusion[J]. High Technology Letters, 1999, 9(6): 32-37
Authors:Yu Xiulan  Qian Guohui  Jia Xiaoguang
Abstract:An iterative technique of multisource remote sensing image classif ication based on Markov random fields and BP neural networks is presented in accordance with the character fusion classification of space remote sensing TM image and SAR ima ge. Compared with the available classified method based on Markov random fields, its merit shows that it is not necessary to assume the conditional probability function, and it has higher classified accuracy than the methods based on BP neu ral networks for considering the space correlation of class lable. The differenc e between this classificator and the traditional context one is that the former implements classification through an iterative progress in which the character a ttribute of pixel category as well as the space correlation of class lable is co nsidered.
Keywords:Multisource remote sensing image classification  Character fusion  Markov random fields   Gibbs distribution   BP neural networks
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号