首页 | 本学科首页   官方微博 | 高级检索  
     


Refinement of 3D structure of bovine lens alpha A-crystallin
Authors:PN Farnsworth  H Frauwirth  B Groth-Vasselli  K Singh
Affiliation:Department of Pharmacology and Physiology, UMD-New Jersey Medical School, Newark 07103, USA. farnswor@umdnj.edu
Abstract:In absence of 3D structures for alpha-crystallin subunits, alpha A and alpha B, we utilized a number of experimental and molecular modeling techniques to generate working 3D models of these polypeptides (Farnsworth et al., 1994. In Molecular Modeling: From Virtual Tools to Real Problems (Eds. Kumosinski, T.F. and Liebman, M.N.) ACS Symposium Series 576, Ch. 9:123-134, 1994, ACS Books, Washington DC). The refinement of the initial bovine alpha A model was achieved using a more accurate estimation of secondary structure by new/updated methods for analyzing the far UV-CD spectra and by neural network secondary structure predictions in combination with database searches. The spectroscopic study reveals that alpha-crystallin is not an all beta-sheet protein but contains approximately 17% alpha-helices, approximately 33% beta-structures and approximately 50% turns and coils. The refinement of the alpha A structure results in an elongate, asymmetric amphipathic molecule. The hydrophobic N-terminal domain imparts the driving force for subunit aggregation while the more flexible, polar C-terminal domain imparts aggregate solubility. In our quaternary structure of the aggregate, the monomer is the minimal cooperative subunit. In bovine alpha A, the highly negatively charged C-terminal domain has three small positive areas which may participate in dimer or tetramer formation of independently expressed C-terminal domains. The electrostatic potential of positive areas is modulated and become more negative with phosphorylation and ATP binding. The refined bovine alpha A model was used to construct alpha A models for the human, chick and dogfish shark. A high degree of conservation of the three dimensional structure and the electrostatic potential was observed. Our proposed open micellar quaternary structure correlates well with experimental data accumulated over the past several decades. The structure is also predictive of the more recent data.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号