首页 | 本学科首页   官方微博 | 高级检索  
     


Junction Stability in Ion-Implanted Mercury Cadmium Telluride
Authors:D Chandra  HF Schaake  MA Kinch
Affiliation:(1) DRS Infrared Technologies, P.O. Box 740188, Dallas, TX 75374, USA
Abstract:Ion implantation into HgCdTe results in the production of Hg interstitials, which can be subsequently driven into the HgCdTe by an annealing process. This diffusive drive-in of the Hg interstitials fills vacancies and kicks out group I impurities and results in the formation of an np junction. In this work we report on the production of interstitials during baking subsequent to the ion implantation process. Various concentrations of metal vacancies were first introduced into mid-wavelength infrared (MWIR, 3 μm to 5 μm) HgCdTe by annealing under tellurium-saturated conditions at various temperatures. Baking subsequent to planar implantation of boron produced np junctions whose depths were measured by defect etching. The results were modeled using a simple diffusion limited model from a fixed surface concentration. The surface concentration was allowed to decrease exponentially to zero after a time, found to be of the order of ∼80 h to 150 h. Exhaustion of the interstitials sources produced by the implantation was nearly complete after ∼400 h. The total number of mercury interstitials produced was approximately 50% of the implant dosage.
Keywords:Mercury cadmium telluride  infrared detector  ion implantation  mercury interstitials  mercury vacancies  diode formation  bake stability
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号