首页 | 本学科首页   官方微博 | 高级检索  
     

车辆主动悬架优化设计与仿真分析
引用本文:付 涛,王大镇,弓清忠,祁 丽. 车辆主动悬架优化设计与仿真分析[J]. 计算机工程与应用, 2016, 52(6): 253-257
作者姓名:付 涛  王大镇  弓清忠  祁 丽
作者单位:集美大学 机械与能源工程学院,福建 厦门 361021
摘    要:基于混合粒子群优化(Hybrid Particle Swarm Optimization,HPSO)算法设计了一种以降低车身加速度(BA),悬架动行程(SWS)和轮胎动位移(DTD)为目标的车辆主动悬架线性最优控制器。建立了2自由度1/4车辆主动悬架动力学模型,运用混合粒子群优化算法对LQG控制器的权值矩阵进行优化求解,在Matlab/Simulink环境下,对不同工况下的车辆悬架进行了仿真分析。仿真结果表明,经过混合粒子群算法优化后的主动悬架在行驶平顺性和操纵稳定性上有所改善,并且优化后主动悬架性能指标BA,SWS和DTD的均方根值最大分别减少了22.56%,44.27%和19.75%。

关 键 词:混合粒子群算法  线性二次型(LQG)控制器  主动悬架  

Optimization design and simulation analysis of vehicle active suspension
FU Tao,WANG Dazhen,GONG Qingzhong,QI Li. Optimization design and simulation analysis of vehicle active suspension[J]. Computer Engineering and Applications, 2016, 52(6): 253-257
Authors:FU Tao  WANG Dazhen  GONG Qingzhong  QI Li
Affiliation:College of Mechanical and Energy Engineering of Jimei University, Xiamen, Fujian 361021, China
Abstract:Based on hybrid particle swarm optimization, a linear optimal controller for vehicle active suspension is designed to reduce the Bodywork Acceleration(BA), Suspension Dynamic Schedule(SWS) and Tire Dynamic Deflection(DTD). Firstly, a 2-DOF dynamic model of a 1/4 vehicle active suspension is established. Then, the hybrid particle swarm algorithm is used to optimize suspension stiffness, suspension damping coefficient and weight matrix of LQG controller. Lastly, the model of different working condition is simulated and analysed under Matlab/Simulink environment. The simulation results illustrate that the riding comfort and handling stability of active suspension have been improved and the root mean square of BA, SWS and DTD is decreased by 22.56%, 44.27%, 19.75% after optimized by hybrid particle swarm.
Keywords:hybrid particle swarm  Linear Quadratic Gaussian(LQG) controller  active suspension  
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号