首页 | 本学科首页   官方微博 | 高级检索  
     

基于自适应变异的混沌粒子群优化算法
引用本文:李建美,高兴宝. 基于自适应变异的混沌粒子群优化算法[J]. 计算机工程与应用, 2016, 52(10): 44-49
作者姓名:李建美  高兴宝
作者单位:陕西师范大学 数学与信息科学学院,西安 710062
摘    要:粒子群优化算法参数少,寻优速度快,但其寻优效率低且在寻优后期易早熟收敛。为改善其寻优性能,在标准粒子群优化算法中,通过引入混沌映射和自适应变异策略,提出具有自适应变异的混沌粒子群优化(ACPSO)算法,以增强种群的全局寻优性能和局部寻优效率。六个基准测试函数的仿真结果表明,ACPSO算法比已有的五个算法具有更好的寻优能力。

关 键 词:粒子群优化  自适应策略  混沌映射  数值优化  

Chaotic particle swarm optimization algorithm with adaptive mutation
LI Jianmei,GAO Xingbao. Chaotic particle swarm optimization algorithm with adaptive mutation[J]. Computer Engineering and Applications, 2016, 52(10): 44-49
Authors:LI Jianmei  GAO Xingbao
Affiliation:College of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710062, China
Abstract:Basic particle swarm optimization algorithm has fewer parameters and fast optimization speed, but it suffers some drawbacks such as low optimization efficiency and falling easily into local optimal point in the optimization process. To improve the global optimization performance and local optimization efficiency of particle swarm optimization algorithm, this paper proposes a chaotic particle swarm optimization algorithm with adaptive mutation (ACPSO) by introducing a chaotic mapping and an adaptive strategy. Compared to five existing algorithms, numerical results on six benchmark test functions indicate that ACPSO algorithm has better performance.
Keywords:particle swarm optimization  adaptive strategy  chaotic map  numerical optimization  
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号