首页 | 本学科首页   官方微博 | 高级检索  
     

一种改进Minhash的分布式协同过滤推荐算法
作者姓名:吴博文  陈曦
作者单位:长沙理工大学 计算机与通信工程学院,长沙 410076
摘    要:协同过滤推荐算法通过研究用户的喜好,实现从海量数据资源中为用户推荐其感兴趣的内容。衡量用户(资源)的相似性是协同过滤算法的核心内容,在数据量大的系统中,用户(资源)的相似性度量会面临准确性和计算复杂性等问题,影响到推荐效果。提出一种改进的协同过滤推荐算法,提取用户兴趣偏好的多值信息,运用改进Minhash算法度量用户相似性,并结合Mapreduce分布式计算,合理、高效地产生用户邻居,实现对用户的评分推荐。实验结果表明:改进算法能有效改善大数据集的推荐准确性并提高推荐效率,降低了推荐耗时。

关 键 词:协同过滤  兴趣偏好  相似度计算  分布式计算  
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号