首页 | 本学科首页   官方微博 | 高级检索  
     


Biomass as a reburning fuel: a specialized cofiring application
Authors:N Stanley Harding  Bradley R Adams
Affiliation:

Reaction Engineering International, 77 West 200 South, Suite 210, Salt Lake City, UT 84101, USA

Abstract:Reaction Engineering International has performed a series of combustion tests to evaluate the potential for utilizing wood biomass as a reburn fuel for nitrogen oxides (NOx) control. Reburning is an effective NOx reduction technology that utilizes fuel injection above the main burner zone. Studies with other hydrocarbon fuels such as coal and natural gas as reburn fuels have shown that NOx emissions can be reduced by more than 50–60% with about 15% of the heat input coming from the reburn fuel. Two different biomasses, a hardwood and softwood, were evaluated as reburning fuels and compared to coal and natural gas. The use of wood to reduce NOx is attractive for several reasons. First, wood contains little nitrogen, as compared with coal which is also used as a reburning fuel. This results in lower NOx production from fuel nitrogen species for wood. In addition, wood contains virtually no sulfur, so sulfur dioxide (SO2) emissions are reduced in direct proportion to the coal replacement. Wood is a regenerable biofuel; when a fossil fuel is replaced by a biofuel, there is a net reduction in carbon dioxide (CO2) emissions. Finally, since the reburning fuel is normally 10–20% of the total heat input, large quantities of wood are not necessary. Experimental results showed NOx reductions of as high as 70% were obtained with approximately 10–15% wood heat input. The stoichiometric ratio in the reburn zone was the single most important variable affecting NOx reduction. The highest reductions were found at a reburn stoichiometric ratio of 0.85. NOx reduction fell to about 40–50% at slightly higher stoichiometric ratios (0.9x reduction was strongly dependent on initial NOx concentration and only slightly dependent upon temperature, where increased temperature increased NOx reduction. Finally, the experimental results suggest that wood is as effective as natural gas or coal as a reburning fuel. In addition, REI has completed computer simulations of a full-scale boiler to evaluate the conditions that maximize the NOx reduction efficiency using biomass as the reburn fuel. Computer modeling of the TVA Allen Station Unit 3, a 265 MWe cyclone-fired boiler, showed that NOx reductions as high as 50–60% could be achieved within the constraints set by the boiler and operations. The most important parameters affecting final NOx emissions are the cyclone barrel stoichiometry, residence time in the reburn zone, and mixing in both the reburn and overfire air zones. The combination of computer simulations and experimental programs has provided the engineers with the tools needed to optimize biomass as a reburn fuel to maximize NOx reduction.
Keywords:NOx  Reburn  Sawdust  Hardwood  Softwood  Natural gas
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号