首页 | 本学科首页   官方微博 | 高级检索  
     


Flexible Hardware Processor for Elliptic Curve Cryptography Over NIST Prime Fields
Abstract: Exchange of private information over a public medium must incorporate a method for data protection against unauthorized access. Elliptic curve cryptography (ECC) has become widely accepted as an efficient mechanism to secure sensitive data. The main ECC computation is a scalar multiplication, translating into an appropriate sequence of point operations, each involving several modular arithmetic operations. We describe a flexible hardware processor for performing computationally expensive modular addition, subtraction, multiplication, and inversion over prime finite fields $GF(p)$ . The proposed processor supports all five primes $p$ recommended by NIST, whose sizes are 192, 224, 256, 384, and 521 bits. It can also be programmed to automatically execute sequences of modular arithmetic operations. Our field-programmable gate-array implementation runs at 60 MHz and takes between 4 and 40 ms (depending on the used prime) to perform a typical scalar multiplication.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号