首页 | 本学科首页   官方微博 | 高级检索  
     

基于Contourlet和KPCA的焊接缺陷图像特征提取
引用本文:吴一全,叶志龙,万红,刚铁. 基于Contourlet和KPCA的焊接缺陷图像特征提取[J]. 焊接学报, 2014, 35(7): 17-21,104
作者姓名:吴一全  叶志龙  万红  刚铁
作者单位:1.南京航空航天大学电子信息工程学院, 南京 210016;哈尔滨工业大学先进焊接与连接国家重点实验室, 哈尔滨 150001
基金项目:国家自然科学基金资助项目(60872065);先进焊接与连接国家重点实验室开放基金资助项目(AWPT-M04);江苏高校优势学科建设工程资助课题
摘    要:为了进一步提高焊接缺陷识别的准确度和效率,提出了一种基于Contourlet变换和混沌粒子群优化核主成分分析(kernel principal component analysis,KPCA)的焊接缺陷图像特征提取方法.首先通过Contourlet变换将焊接缺陷图像进行多尺度分解,提取低频分量和特定方向上的高频分量;然后运用混沌粒子群优化后的KPCA分别提取缺陷训练样本和缺陷测试样本的特征;最后根据测试样本特征与训练样本特征之间的欧式距离确定缺陷测试样本的类型.结果表明,与基于核主成分分析特征提取法、基于小波的核主成分分析特征提取法相比,文中方法提取的特征更为完整,识别率更高,运行速度较快.

关 键 词:焊接缺陷检测   特征提取   Contourlet变换   核主成分分析   混沌粒子群优化
收稿时间:2013-01-29

Feature extraction for welding defect image based on contourlet transform and kernel principal component analysis
WU Yiquan,YE Zhilong,WAN hong and GANG Tie. Feature extraction for welding defect image based on contourlet transform and kernel principal component analysis[J]. Transactions of The China Welding Institution, 2014, 35(7): 17-21,104
Authors:WU Yiquan  YE Zhilong  WAN hong  GANG Tie
Affiliation:1.College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China2.College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China3.State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
Abstract:In order to further improve the accuracy and efficiency of welding defect recognition, a method was proposed to extract feature of welding defect image based on contourlet transform and kernel principal component analysis(KPCA) by chaotic particle swarm optimization(CPSO). Firstly, multi-scale decomposition of welding defect images was performed by contourlet transform. Low-frequency components and high-frequency components in a certain direction were extracted. Then, features of training samples and testing samples of welding defects were extracted using KPCA by CPSO, respectively. Finally, the type of welding defect testing samples was determined according to the Euclidean distance between features of training samples and features of testing samples. A large number of experimental results show that, compared with the feature extraction method based on KPCA and the feature extraction method based on the combination of wavelet transform and KPCA, the proposed method can extract feature more completely and has higher recognition rate and operating speed.
Keywords:welding defect detection  feature extraction  contourlet transform  kernel principal component analysis  chaotic particle swarm optimization
本文献已被 CNKI 等数据库收录!
点击此处可从《焊接学报》浏览原始摘要信息
点击此处可从《焊接学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号