Thermosiphon-based PCR reactor: experiment and modeling |
| |
Authors: | Chen Zongyuan Qian Shizhi Abrams William R Malamud Daniel Bau Haim H |
| |
Affiliation: | Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104-6315, USA. |
| |
Abstract: | A self-actuated, flow-cycling polymerase chain reaction (PCR) reactor that takes advantage of buoyancy forces to continuously circulate reagents in a closed loop through various thermal zones has been constructed, tested, and modeled. The heating required for the PCR is advantageously used to induce fluid motion without the need for a pump. Flow velocities on the order of millimeters per second are readily attainable. In our preliminary prototype, we measured a cross-sectionally averaged velocity of 2.5 mm/s and a cycle time of 104 s. The flow velocity is nearly independent of the loop's length, making the device readily scalable. Successful amplifications of 700- and 305-bp fragments of Bacillus cereus genomic DNA have been demonstrated. Since the device does not require any moving parts, it is particularly suitable for miniature systems. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|