首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波能量与神经网络的断路器振动信号识别方法
作者姓名:陈伟根  范海炉  王有元  孙才新
作者单位:重庆大学,高电压与电工新技术教育部重点实验室,重庆,400044;重庆大学,高电压与电工新技术教育部重点实验室,重庆,400044;重庆大学,高电压与电工新技术教育部重点实验室,重庆,400044;重庆大学,高电压与电工新技术教育部重点实验室,重庆,400044
摘    要:高压断路器出现机械故障不仅会引起振动冲击事件的时间漂移,还会引起时域波形中一些波峰幅值的变化。依据同一类型断路器振动信号相似的特点,在对高压断路器故障振动信号进行特征分析的基础上,提出了一种识别高压断路器振动信号的新方法:将小波包提取算法和径向基神经网络模式识别功能相结合,利用小波包分解与重构原理将断路器合闸振动信号分解到不同频段中,提取每个频带能量作为断路器状态监测的特征向量,作为径向基神经网络的输入向量;基于径向基神经网络的故障诊断方法在系统参数未知的情况下自动建立动态模型,对于线性系统和非线性系统都有很好的跟踪能力,通过实验室断路器典型合闸振动信号的监测及识别分析验证了该方法的有效性。

关 键 词:小波包  高压断路器  振动信号  神经网络
文章编号:1006-6047(2008)02-0029-04
收稿时间:2006-12-30
修稿时间:2007-04-16
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电力自动化设备》浏览原始摘要信息
点击此处可从《电力自动化设备》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号