首页 | 本学科首页   官方微博 | 高级检索  
     

考虑SOC优化设定的电-氢混合储能系统的运行优化
引用本文:姜智霖,郝峰杰,袁志昌,朱小毅,郭佩乾,潘海宁,项淼毅,贺宁怡. 考虑SOC优化设定的电-氢混合储能系统的运行优化[J]. 电力系统保护与控制, 2024, 52(8): 65-76
作者姓名:姜智霖  郝峰杰  袁志昌  朱小毅  郭佩乾  潘海宁  项淼毅  贺宁怡
作者单位:1.清华大学电机工程与应用电子技术系,北京 100084;2.中国长江三峡集团有限公司,北京 100038
基金项目:国家自然科学基金专项项目资助(52241701);中国长江三峡集团有限公司科研项目资助(202103417)
摘    要:针对含电-氢混合储能的源网荷储系统,为提高新能源的消纳水平并降低系统运行成本,提出了考虑SOC优化设定的电氢混合储能系统的运行优化方法,实现系统的日前实时优化调度。首先提出了大容量储能系统SOC优化设定的方法,以确定储能系统日前的始末SOC优化设定值。随后,基于双延迟深度确定性策略梯度算法,提出了一种日前实时优化调度模型训练方法。结合储能SOC的优化设定值和日前运行数据,建立了源网荷储系统的实时优化调度模型,实现日前和实时综合优化调度。最后,通过算例分析验证了所提运行优化方法的有效性。结果表明,大容量储能系统的SOC优化设定方法可以有效提高系统收益,日前-实时优化调度模型则在日前优化调度的基础上减少了预测误差带来的影响。

关 键 词:混合储能;氢储能系统;SOC优化设定;深度强化学习;日前-实时调度
收稿时间:2023-10-24
修稿时间:2024-03-01

Optimal operation of an electro-hydrogen hybrid energy storage system considering SOC optimization setting
JIANG Zhilin,HAO Fengjie,YUAN Zhichang,ZHU Xiaoyi,GUO Peiqian,PAN Haining,XIANG Miaoyi,HE Ningyi. Optimal operation of an electro-hydrogen hybrid energy storage system considering SOC optimization setting[J]. Power System Protection and Control, 2024, 52(8): 65-76
Authors:JIANG Zhilin  HAO Fengjie  YUAN Zhichang  ZHU Xiaoyi  GUO Peiqian  PAN Haining  XIANG Miaoyi  HE Ningyi
Affiliation:1. Department of Electrical Engineering, Tsinghua University, Beijing 100084, China;2. China Three Gorges Corporation, Beijing 100038, China
Abstract:To enhance the efficiency of renewable energy utilization and minimize operational costs within the source- grid-load-storage system with electro-hydrogen hybrid energy storage, this paper presents an optimal operation method of electro- hydrogen hybrid energy storage system considering an SOC optimization setting to realize the day-ahead real-time optimal scheduling of the system. First, a method for SOC optimization setting of high-capacity energy storage systems is proposed to determine the day-ahead SOC optimization settings at the start and end of each day for the energy storage system. Subsequently, based on a twin delayed deep deterministic policy gradient algorithm, a day-ahead real-time optimal scheduling model training method is proposed. A real-time model for source-network-load energy storage system is established based on the optimized set points of energy storage SOCs and day-ahead operation data to achieve day-ahead real-time integrated optimal scheduling. Finally, the effectiveness of the proposed method is validated through case study results. The result indicates that the method proves to be efficient in enhancing system revenue, while the day-ahead real-time optimal scheduling model mitigates the impact of prediction errors.
Keywords:hybrid energy storage   hydrogen energy storage system   SOC optimization setting   deep reinforcement learning   day-ahead real-time scheduling
点击此处可从《电力系统保护与控制》浏览原始摘要信息
点击此处可从《电力系统保护与控制》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号