首页 | 本学科首页   官方微博 | 高级检索  
     

滚动轴承技术故障诊断的支持向量机方法研究
引用本文:张国云,章兢,向文江. 滚动轴承技术故障诊断的支持向量机方法研究[J]. 计算机工程与应用, 2005, 41(16): 227-229
作者姓名:张国云  章兢  向文江
作者单位:湖南大学电气与信息工程学院,长沙,410082;湖南理工学院电子信息系,岳阳,414006;湖南大学电气与信息工程学院,长沙,410082;湖南大学机械与汽车工程学院,长沙,410082
基金项目:教育部科学技术研究重点资助(编号:[2001]224)
摘    要:针对当前故障诊断中几种常用方法的不足,首次提出将支持向量机方法应用于滚动轴承技术故障诊断。该文提出的两种算法其核心均是利用支持向量机方法对样本进行分类。支持向量机方法基于小学习样本条件下,通过寻求结构风险最小,以期获得良好的分类效果和泛化能力。两种实验结果表明,在选用合适核函数及参数条件下,支持向量机具有学习速度快、诊断正确率高的优良性能,这一结论表明了该文所提出方法的优越性。

关 键 词:滚动轴承  故障诊断  支持向量机  核函数
文章编号:1002-8331-(2005)16-0227-03

A Novel SVM Approach to the Technique State Diagnosis of the Trundle Bearing
Zhang Guoyun,Zhang Jing,Xiang Wenjiang. A Novel SVM Approach to the Technique State Diagnosis of the Trundle Bearing[J]. Computer Engineering and Applications, 2005, 41(16): 227-229
Authors:Zhang Guoyun  Zhang Jing  Xiang Wenjiang
Affiliation:Zhang Guoyun1,3 Zhang Jing1 Xiang Wenjiang2 1
Abstract:Based on analyzing the shortages of several approaches in fault diagnosis,a Support Vector Machine(SVM)method is proposed and applied to the technique state diagnosis of the trundle bearing for the first time.The cores of the two algorithms presented in this paper are to classify the samples with SVM method.The SVM method is based on seeking on the Structural Risk Minimization by few learning samples supporting,and it has important feature such as good generalization and classification performance,etc.The experimental results show that the SVM approach has learning fast and a good diagnosis performance under the condition of the appropriate kernel function and its parameters being selected,this conclusions indicate the proposed approach has the superiority.
Keywords:trundle bearing  fault diagnosis  support vector machine  kernel function
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号