首页 | 本学科首页   官方微博 | 高级检索  
     

遗传程序设计分析股价移动平均及中长期走势*
引用本文:赵尔波,马欢,韩战钢. 遗传程序设计分析股价移动平均及中长期走势*[J]. 计算机应用研究, 2010, 27(6): 2166-2169. DOI: 10.3969/j.issn.1001-3695.2010.06.049
作者姓名:赵尔波  马欢  韩战钢
作者单位:1. 北京师范大学,管理学院,系统科学系,北京,100875
2. 国家知识产权局,专利局,北京,100088
基金项目:国家自然科学基金资助项目(60774085)
摘    要:将遗传程序设计应用到股票价格分析,在股票市场各种因素相互作用与影响很难厘清的情况下,只从个别因素(价格)入手,测试对单一因素预测所能达到的效果;提出了两种预测方法:对不同尺度的股票移动平均线进行预测和对股票价格数据进行平滑预处理之后所进行的中长期预测。通过遗传程序设计算法,寻找前几个时间单位的股票价格对本期股票价格影响的经验公式,以期反映价格变动的规律。计算机实验模拟表明,该方法对于平均线的预测和中长期预测有较好的效果。

关 键 词:遗传程序设计; 适应性函数值; 移动平均线; FFT滤波

Applying genetic programming to analyze moving average and long & mid-term trends of stock prices
ZHAO Er-bo,MA Huan,HAN Zhan-gang. Applying genetic programming to analyze moving average and long & mid-term trends of stock prices[J]. Application Research of Computers, 2010, 27(6): 2166-2169. DOI: 10.3969/j.issn.1001-3695.2010.06.049
Authors:ZHAO Er-bo  MA Huan  HAN Zhan-gang
Abstract:This paper employed genetic programming (GP) to analyze stock price. The task tried to find out how far it could go if used only one element, which was the price, to predict the stock market, based on the understanding that it was impossible to distinguish all the interactions between various elements in the stock market. Our work proposed two multi-scale approaches trying to predict stock prices. One was to use GP to form empirical formulas to predict the moving average lines of stock prices; the other was to use GP to do long & mid-term predictions on pre-processed data. The aim was to find empirical laws for specific enterprises stock prices based on previous stock price data. Simulations show that the method to predict the moving average and long & mid-term trends of stock prices is effective.
Keywords:genetic programming   fitness function   moving average   FFT filtering
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号