首页 | 本学科首页   官方微博 | 高级检索  
     

改进型RBF神经网络的多标签算法研究
引用本文:李书玲,刘 蓉,刘 红. 改进型RBF神经网络的多标签算法研究[J]. 计算机科学, 2015, 42(4): 316-320
作者姓名:李书玲  刘 蓉  刘 红
作者单位:华中师范大学物理科学与技术学院 武汉430079
基金项目:本文受国家社会科学基金:大众分类中标签间语义关系挖掘研究(12BTQ038)资助
摘    要:针对已有的RBF神经网络多标签算法未充分考虑多个样本标签之间的关联性,从而导致泛化性能受到一定影响的问题,研究分析了一种改进型RBF神经网络的多标签算法.该算法首先优化隐含层RBF神经网络基函数中心求取算法——k-均值聚类.采用AP聚类自动寻找k值以获得隐含层节点数目,并构造Huff man树来选取初始聚类中心以防k-均值聚类结果陷入局部最优.然后构造体现标签类之间信息的标签计数向量C,并将其与由优化k-均值聚类得到的聚类中心进行线性叠乘,进而改进RBF神经网络基函数中心,建立RBF神经网络.在公共多标签数据集emotion上的实验表明了该算法能够有效地进行多标签分类.

关 键 词:多标签学习  RBF神经网络  k-均值聚类  AP聚类

Multi-label Learning for Improved RBF Neural Networks
LI Shu-ling,LIU Rong and LIU Hong. Multi-label Learning for Improved RBF Neural Networks[J]. Computer Science, 2015, 42(4): 316-320
Authors:LI Shu-ling  LIU Rong  LIU Hong
Affiliation:College of Physical Science and Technology,Central China Normal University,Wuhan 430079,China,College of Physical Science and Technology,Central China Normal University,Wuhan 430079,China and College of Physical Science and Technology,Central China Normal University,Wuhan 430079,China
Abstract:A modified multi-label radial basis function (RBF) neural network algorithm that can fully consider the relationship between numbers of sample labels was presented.This improved algorithm is based on the fact that ignoring the relevance between sample labels may cause potential performance loss.The modified algorithm first optimizes the RBF basis function center calculation algorithm in hidden layer,i.e.k-means clustering.AP clustering is used to automatically find k values to obtain the node number of hidden layer and a Huffman tree is constructed to select the initial cluster centers to prevent the k-means clustering results falling into local optimal.Then a label counting vector C that reflects the correlation between the labels is constructed,and it is linearly multiplied with the clustering centers which are obtained through k-means clustering optimization to optimize the RBF basis function center and establish RBF neural network.Experiments using the public multi-label emotion data sets demonstrate the effectiveness of the proposed algorithm.
Keywords:Multi-label learning  RBF neural networks  k-means clustering  AP clustering
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号