首页 | 本学科首页   官方微博 | 高级检索  
     


The use of toxicologic data in mechanistic risk assessment: 1,3-butadiene as a case study
Authors:JA Bond  MW Himmelstein  MA Medinsky
Affiliation:Chemical Industry Institute of Toxicology, Research Triangle Park, NC 27709-2137, USA.
Abstract:The National Research Council (NRC) recently published a report. Science and Judgment in Risk Assessment, that critiqued the current approaches to characterizing human cancer risks from exposure to chemicals. One issue raised in the report relates to the use of default options for quantitation of cancer risks. Default options are general guidelines that can be used for risk assessment when specific information about a chemical is absent. Research on 1,3-butadiene represents an interesting case study in which existing knowledge on this chemical indicates that two default options may no longer be tenable: (1) humans are as sensitive as the most sensitive animal species, and (2) the rate of metabolism is a function of body surface area rather than inherent species differences in metabolic capacity. Butadiene, a major commodity chemical used in the production of synthetic rubber, is listed as one of 189 hazardous air pollutants under the 1990 Clean Air Act Amendments. Butadiene is a carcinogen in rats and mice, with mice being substantially more sensitive than rats. The extent to which butadiene poses a cancer risk to humans exposed to this chemical is uncertain. Butadiene requires metabolic activation to DNA-reactive epoxides to exert its mutagenic and carcinogenic effects. Research is directed toward obtaining a better understanding of the cancer risks of butadiene in humans by evaluating species-dependent differences in the formation of the toxic butadiene epoxide metabolites, epoxybutene and diepoxybutane. The data include in-vitro studies on butadiene metabolism using tissues from humans, rats, and mice as well as experimental data and physiological model predictions for butadiene in blood and butadiene epoxides in blood, lung, and liver after exposure of rats and mice to inhaled butadiene. The findings suggest that humans are more like rats and less like mice regarding the formation of butadiene epoxides. The research approach employed can be a useful strategy for developing mechanistic and toxicokinetic data to supplant default options used in carcinogen risk assessments for butadiene.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号