首页 | 本学科首页   官方微博 | 高级检索  
     


Microstructure and dielectric properties of Dy/Mn doped BaTiO3 ceramics
Authors:V Paunovic  VV Mitic  Z Prijic  Lj Zivkovic
Affiliation:1. University of Nis, Faculty of Electronic Engineering, Aleksandra Medvedeva 14, 18000 Niš, Serbia;2. Institute of Technical Sciences, SASA, Knez Mihailova 35, 11000 Belgrade, Serbia
Abstract:Dy/Mn doped BaTiO3 with different Dy2O3 contents, ranging from 0.1 to 5.0 at% Dy, were investigated regarding their microstructural and dielectric characteristics. The content of 0.05 at% Mn was constant in all the investigated samples. The samples were prepared by the conventional solid state reaction and sintered at 1290°, and 1350 °C in air atmosphere for 2 h. The low doped samples (0.1 and 0.5 at% Dy) exhibit mainly fairly uniform and homogeneous microstructure with average grain sizes ranged from 0.3 μm to 3.0 μm. At 1350 °C, the appearance of secondary, abnormal, grains in the fine grain matrix and core–shell structure were observed in highly doped Dy/BaTiO3. Dielectric measurements were carried out as a function of temperature up to 180 °C. The low doped samples sintered at 1350 °C, display the high value of dielectric permittivity at room temperature, 5600 for 0.1Dy/BaTiO3. A nearly flat permittivity–temperature response was obtained in specimens with 2.0 and 5.0 at% additive content. Using a Curie–Weiss and modified Curie–Weiss low, the Curie constant (C), Curie like constant (C′), Curie temperature (TC) and a critical exponent (γ) were calculated. The obtained values of γ pointed out the diffuse phase transformation in highly doped BaTiO3 samples.
Keywords:A  Sintering  B  Microstructures  C  Dielectric properties  D  BaTiO3
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号