首页 | 本学科首页   官方微博 | 高级检索  
     


Production of dimethyl ether and hydrogen by methanol reforming for an HCCI engine system with waste heat recovery – Continuous control of fuel ignitability and utilization of exhaust gas heat
Authors:Toshio Shudo  Yosuke Shima  Tatsuya Fujii
Affiliation:aDivision of Energy and Environmental Systems, Hokkaido University, N13W8, Sapporo 060-8628, Japan;bHonda R&D, Tochigi-pref., Japan;cToyota Motor Co., Aichi-pref., Japan
Abstract:Homogeneous charge compression ignition (HCCI) is a promising technique to achieve high thermal efficiency and clean exhaust with internal combustion engines. However, the difficulty in ensuring optimal ignition timing control prevents its practical application. Previous research has shown that adjusting the proportion of dimethyl ether (DME) and hydrogen-containing methanol-reformed gas (MRG) can control the ignition timing in an HCCI combustion engine fueled with the two fuels. As both DME and MRG can be produced in endothermic methanol reforming reactions, onboard reforming utilizing the exhaust gas heat can recover the waste heat from the engine. A very high overall thermal efficiency can be achieved by combining the high engine efficiency with HCCI and the waste heat recovery. This research investigates the basic characteristics of methanol reforming in a reactor tube with different catalysts with the aim to produce fuels for the HCCI combustion system.
Keywords:HCCI  Ignition control  Waste heat recovery  Methanol reforming  DME  Hydrogen  Dehydration  Thermal decomposition  Partial oxidation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号