首页 | 本学科首页   官方微博 | 高级检索  
     

基于多级隐空间信息约束的噪声人脸超分辨率算法
引用本文:滕辎,于晓升,吴成东. 基于多级隐空间信息约束的噪声人脸超分辨率算法[J]. 控制与决策, 2024, 39(5): 1469-1477
作者姓名:滕辎  于晓升  吴成东
作者单位:东北大学 机器人科学与工程学院,沈阳 110169
基金项目:国家自然科学基金项目(U20A20197,61973063);辽宁省重点研发计划项目(2020JH2/10100040);辽宁省自然科学基金项目(2021-KF-12-01);中国科学院光电信息处理重点实验室开放基金项目(OEIP-O-202005).
摘    要:为了实现强噪声和模糊干扰下的低清人脸图像重建,提出一种基于多级隐空间信息约束的噪声人脸超分辨率算法.首先设计一个用于人脸有效信息提取的特征蒸馏网络, 并通过统计性抗干扰模型和隐空间特征对比算法移除噪声等无效信息,构建一个具有高噪声鲁棒性的人脸信息提取模型;然后,设计人脸重建网络,该网络利用提取的人脸特征重建高清人脸图像; 最后,通过人脸身份嵌入模型和离散小波变换模型,分别从超球面身份度量空间和小波域进一步对重建人脸的身份信息和空间结构进行约束.实验结果表明,所提出的算法不仅能够有效去除高噪声环境下的人脸噪声,而且还能有效提升人脸图像分辨率,获得更高的峰值信噪比(peak signal-to-noise ratio,PSNR)和结构相似度(structural similarity index,SSIM),具有较好的实用性.

关 键 词:特征蒸馏  隐空间信息约束  图像超分辨率  图像去噪  深度神经网络  超球面度量空间  小波变换

Noisy face super-resolution method based on multi-level latent space information constraints
TENG Zi,YU Xiao-sheng,WU Cheng-dong. Noisy face super-resolution method based on multi-level latent space information constraints[J]. Control and Decision, 2024, 39(5): 1469-1477
Authors:TENG Zi  YU Xiao-sheng  WU Cheng-dong
Affiliation:Faculty of Robot Science and Engineering,Northeastern University,Shenyang 110169,China
Abstract:To super-resolve low-resolution(LR) face image suffering from strong noise and fuzzy interference, we propose a noisy face super-resolution(FSR) method based on multi-level latent space information constraints. Firstly, we design a feature distillation network to extract effective facial information, which exploits a statistical anti-interference model and a latent contrast algorithm to remove invalid information such as noise. Then, we design a face reconstruction network, which utilizes the extracted face features to reconstruct high-resolution(HR) face images. Finally, we deploy a face identity embedding model and a discrete wavelet transform model to further supervise the reconstruction of identity information and spatial structure from the hypersphere identity metric space and wavelet domain respectively. The experimental results show that the proposed method not only removes the noise from face in the high noise environment, but also improves the resolution of the face image effectively, which obtains higher PSNR, SSIM, and good practicability.
Keywords:feature distillation;latent information constraint;image super-resolution;image denoising;deep neural network;hypersphere metric space;wavelet transform
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号