首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental study on control fins of a small flying vehicle using piezo-composite actuators
Authors:Bum Soo Yoon  Ji Hwan Park
Affiliation:Artificial Muscle Research Center, Department of Aerospace Information Engineering, Konkuk University, Seoul 143-701, South Korea
Abstract:A camber morphing control fin design and an all-moving control fin design using piezo-composite unimorph actuators are presented in this paper. The control fin of a small flying object is usually actuated using a servo motor system with an electromagnetic motor. Much research has been conducted to solve the structural complexity of servo actuation systems to convert the rotation of a servo motor to a linear actuation motion. To simplify this structural complexity, several types of smart actuators have been developed, such as bimorph or unimorph actuators with piezoelectric material layers and shape memory alloy actuators. In this study, a camber morphing type control fin and an all-moving type control fin actuated using piezo-composite actuators are designed to evaluate their ability to simplify the structural complexity of the gear transmission and electromagnetic servo motor system or hydraulic actuator system. Within the skin of the control fin, a piezo-composite actuator is mounted and the other end inserted in a slot of the control fin. As the piezo-composite actuator is excited by an electric field, the pitch angle of the control fin is changed. Experimental testing for the pitch rotation angle of a control fin in a 450 V electric field showed the deflection angle of the camber morphing control fin was 1.4° and the rotational angle of the all-moving control fin was 5.4°, which is obtained from the rotation angle magnification linkage structural system.
Keywords:piezo-composite actuator  morphing wing  unimorph actuator  camber deformation  all-moving control fin
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号