首页 | 本学科首页   官方微博 | 高级检索  
     

单摆大振幅振动的解析逼近解
引用本文:李鹏松,孙维鹏,吴柏生. 单摆大振幅振动的解析逼近解[J]. 振动与冲击, 2008, 27(2): 72-74
作者姓名:李鹏松  孙维鹏  吴柏生
作者单位:1. 东北电力大学理学院,吉林,132012
2. 吉林大学数学学院力学与工程科学系,长春,130012
摘    要:构造了单摆大振幅振动的高精度解析逼近周期和周期解.首先,利用Maclaurin展开和Chebyshev多项式加速技术将单摆振动方程中的正弦型恢复力用三次多项式近似代替,得到一个Duffing型方程;然后,将牛顿法与谐波平衡法结合起来建立Duffing方程的解析逼近周期及周期解,从而给出单摆振动的解析逼近解.因此,在求解过程中避免了关于参数的非线性代数方程组的出现,只需解线性代数方程组就能建立单摆振动的解析逼近周期及周期解.几乎在振幅(初始摆角)的全部取值范围内,与数值方法给出"精确"周期及周期解比较,得到的解析逼近解都有很高的逼近精度.

关 键 词:单摆  大振幅  解析逼近  牛顿法  谐波平衡法  单摆  大振幅振动  逼近解  Simple Pendulum  Oscillation  Large Amplitude  Approximate Solutions  逼近精度  比较  数值方法  取值范围  摆角  解线性代数方程组  参数  求解过程  方程的解  结合  谐波平衡法  牛顿法  Duffing
收稿时间:2007-05-28
修稿时间:2007-07-05

Analytical Approximate Solutions to Large Amplitude Oscillation of a Simple Pendulum
LI Peng-song,SUN Wei-peng,WU Bai-sheng. Analytical Approximate Solutions to Large Amplitude Oscillation of a Simple Pendulum[J]. Journal of Vibration and Shock, 2008, 27(2): 72-74
Authors:LI Peng-song  SUN Wei-peng  WU Bai-sheng
Abstract:Analytical approximate periods and periodic solutions to large amplitude oscillation of a simple pendulum are constructed using a new method.Firstly,the function sinx that appears in the simple pendulum equation is replaced with a polynomial of degree 3 using Maclaurin series expansion and Chebyshev polynomial approximation.Subsequently,the resulting equation which is a Duffing type equation is approximately solved with combing Newton's method and the harmonic balance method.It yields simple linear algebraic equations instead of nonlinear algebraic equations withno analytical solution.The new analytical approximate periods and periodic solutions show excellent agreement with the numerically exact solutions,and they are valid over almost the whole allowable range of oscillation amplitudes.
Keywords:simple pendulum  large amplitude  analytical approximation  the nowton's method  the method of harmonic balance
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号