首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental investigation on the electrochemical machining of 00Cr12Ni9Mo4Cu2 material and multi-objective parameters optimization
Authors:L Tang  S Yang
Affiliation:1. School of Mechatronics Engineering, Xi’an Technological University, Xi’an, 710032, China
2. School of Mechatronics Engineering, Weiyang Campus of Xi’an Technological University, Box 41, 2 Xuefuzhonglu Avenue, Weiyang College Park, Weiyang District, Xi’an, 710021, Shaanxi Province, People’s Republic of China
Abstract:Special stainless steel 00Cr12Ni9Mo4Cu2 has multiple composition and inhomogeneous tissues; short circuiting will frequently occur when using conventional electrolyte processing. This article analyzes the reason why the process of machining is difficult from the material composition and structure. We used the NaNO3 and NaClO3 electrolyte composite to select the appropriate concentration, and then by using the orthogonal experiment and gray relational analysis method, we discussed how the voltage, feed speed, and electrolyte pressure solved the problem of the material removal rate (MRR), surface roughness (SR), and side gap. Under optimal conditions of 20 V, an electrolyte composite concentration of 178 g/l NaNO3 and 41 g/l NaClO3, a feed rate of 0.7 mm/min, and an electrolyte pressure of 0.8 MPa, a material removal rate of 100.8 mm3/min, a surface roughness of Ra 0.8 μm, and a side gap of 0.16 mm were produced. Given the same voltage, with an increasing cathode feed rate, the MRR was shown to increase while the surface roughness value and the side gap decreased. Under the same cathode feed rate, the MRR decreases, while the side gap and the surface roughness increase as the electrochemical machining application voltage increases. This study proves that using a certain concentration of electrolyte composite is a simple, low-cost, and feasible approach in improving efficiency and quality.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号