首页 | 本学科首页   官方微博 | 高级检索  
     


Multiple mechanisms of activating Ca2+ entry in freshly isolated rabbit aortic endothelial cells
Authors:X Wang  C van Breemen
Affiliation:Department of Pharmacology and Therapeutics, The University of British Columbia, Vancouver, Canada.
Abstract:In Fura-2-loaded, freshly isolated rabbit aortic endothelial cells the Ca2+ entry pathway was investigated using the Mn2(+)-quenching technique. Acetylcholine (ACh) interaction with muscarinic receptors activated Mn2+ influx through the plasma membrane. Sarcoplasmic-endoplasmic reticulum Ca2+ ATPase blockers such as cyclopiazonic acid (CPA), thapsigargin and BHQ, which block the endoplasmic reticulum Ca2+ pump and do not interact with receptors, also activated Mn2+ influx. Mn2+ influx activated by either ACh or CPA was blocked by the following agents: SKF96365, a receptor-operated Ca2+ channel (ROC) blocker; NCDC, a PLC and ROC blocker, and genistein, a tyrosine kinase inhibitor. D600, the L-type Ca2+ channel blocker, had no significant effect on Mn2+ influx. Caffeine blocked the ACh-induced Ca2+ release but had no effect on the ACh-induced Mn2+ influx. Similarly dantrolene, which blocked intracellular Ca2+ release induced by ACh, did not affect the ACh-activated Mn2+ influx. These data suggest that ACh can activate Ca2+ influx without depletion of the ACh-sensitive intracellular Ca2+ store. It is concluded (1) that in freshly isolated endothelial cells depletion of the intracellular Ca2+ store is not necessary for ACh-activated Ca2+ influx, and (2) that receptor activation and intracellular Ca2+ store depletion may activate the same Ca2+ entry pathway through parallel mechanisms.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号