首页 | 本学科首页   官方微博 | 高级检索  
     


Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation
Authors:Vecitis Chad D  Schnoor Mary H  Rahaman Md Saifur  Schiffman Jessica D  Elimelech Menachem
Affiliation:Department of Chemical and Environmental Engineering, Yale University , New Haven, Connecticut 06520-8286, United States. vecitis@seas.harvard.edu
Abstract:Nanotechnology has potential to offer solutions to problems facing the developing world. Here, we demonstrate the efficacy of an anodic multiwalled carbon nanotube (MWNT) microfilter toward the removal and inactivation of viruses (MS2) and bacteria (E. coli). In the absence of electrolysis, the MWNT filter is effective for complete removal of bacteria by sieving and multilog removal of viruses by depth-filtration. Concomitant electrolysis during filtration results in significantly increased inactivation of influent bacteria and viruses. At applied potentials of 2 and 3 V, the electrochemical MWNT filter reduced the number of bacteria and viruses in the effluent to below the limit of detection. Application of 2 and 3 V for 30 s postfiltration inactivated >75% of the sieved bacteria and >99.6% of the adsorbed viruses. Electrolyte concentration and composition had no correlation to electrochemical inactivation consistent with a direct oxidation mechanism at the MWNT filter surface. Potential dependent dye oxidation and E. coli morphological changes also support a direct oxidation mechanism. Advantages of the electrochemical MWNT filter for pathogen removal and inactivation and potential for point-of-use drinking water treatment are discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号