首页 | 本学科首页   官方微博 | 高级检索  
     


Identification of multi-input systems: variance analysis and input design issues
Authors:M. Gevers [Author Vitae],L. Mi&scaron  kovi? [Author Vitae],D. Bonvin [Author Vitae]
Affiliation:a Center for Systems Engineering and Applied Mechanics (CESAME), Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
b Laboratoire d’Automatique, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
Abstract:This paper examines the identification of multi-input systems. Motivated by an experiment design problem (should one excite the various inputs simultaneously or separately), we examine the effect of an additional input on the variance of the estimated coefficients of parametrized rational transfer function models, with special emphasis on the commonly used FIR, ARX, ARMAX, OE and BJ model structures. We first show that, for model structures that have common parameters in the input-output and noise models (e.g. ARMAX), any additional input contributes to a reduction of the covariance of all parameter estimates. We then show that the accuracy improvement extends beyond the case of common parameters in all transfer functions, and we show exactly which parameter estimates are improved when a new input is added. We also conclude that it is always better to excite all inputs simultaneously.
Keywords:Identification   Variance analysis   Input design   Multi-input systems
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号