首页 | 本学科首页   官方微博 | 高级检索  
     

采用多分辨率广义S变换的电能质量扰动识别
引用本文:黄南天,张卫辉,徐殿国,蔡国伟,刘闯,张书鑫. 采用多分辨率广义S变换的电能质量扰动识别[J]. 哈尔滨工业大学学报, 2015, 47(9): 51-56
作者姓名:黄南天  张卫辉  徐殿国  蔡国伟  刘闯  张书鑫
作者单位:东北电力大学 电气工程学院,132012 吉林 吉林,东北电力大学 电气工程学院,132012 吉林 吉林,哈尔滨工业大学 电气工程及自动化学院,150001 哈尔滨,东北电力大学 电气工程学院,132012 吉林 吉林,东北电力大学 电气工程学院,132012 吉林 吉林,东北电力大学 电气工程学院,132012 吉林 吉林
基金项目:国家自然科学基金 (51307020);吉林省科技发展计划(20150520114JH);吉林市科技发展计划(201464052).
摘    要:为提高电能质量复合扰动识别能力,提出一种采用多分辨率广义S变换(multiresolution generalized S-transform,GST)的扰动识别方法.首先,将信号频谱分为低频、中频、高频3个频域,分别设定窗宽调整因子,使其在各个频域具有不同的时-频分辨率,满足不同扰动信号识别要求.并针对高频振荡识别问题,设计基于基频傅里叶谱特征的自适应窗宽调整方法.在此基础上,提取6种特征用于构建决策树.最后,提出最小分类损失原则,确定决策树节点分类阈值,设计扰动分类器.仿真与实测信号实验证明,新方法能够准确识别含5种复合扰动在内的13种扰动.相较于S变换、广义S变换和Hyperbolic S变换,新方法具有更好的特征表现能力,分类效果好,抗噪声干扰能力强.

关 键 词:电能质量  电能质量暂态扰动  S变换  多分辨率  决策树
收稿时间:2014-07-05

Classification of power quality disturbances utilizing multiresolution generalized S-transform
HUANG Nantian,ZHANG Weihui,XU Dianguo,CAI Guowei,LIU Chuang and ZHANG Shuxin. Classification of power quality disturbances utilizing multiresolution generalized S-transform[J]. Journal of Harbin Institute of Technology, 2015, 47(9): 51-56
Authors:HUANG Nantian  ZHANG Weihui  XU Dianguo  CAI Guowei  LIU Chuang  ZHANG Shuxin
Affiliation:School of Electrical Engineering, Northeast Dianli University, 132012 Jilin, Jilin,China,School of Electrical Engineering, Northeast Dianli University, 132012 Jilin, Jilin,China,School of Electrical Engineering and Automation, Harbin Institute of Technology, 150001 Harbin, China,School of Electrical Engineering, Northeast Dianli University, 132012 Jilin, Jilin,China,School of Electrical Engineering, Northeast Dianli University, 132012 Jilin, Jilin,China and School of Electrical Engineering, Northeast Dianli University, 132012 Jilin, Jilin,China
Abstract:In order to improve the ability of complex power quality disturbances recognition, a new type of complex disturbances recognition approach based on Multiresolution Generalized S-transform (MGST) is proposed. Firstly, the spectrum of original signals is segmented into 3 frequency areas including low frequency area, medium frequency area and high frequency area. The width factor of window function in S-transform is defined respectively in different frequency areas. MGST has different time-frequency resolution in each frequency area in order to satisfy the recognition requirements of different disturbances in each frequency area. Otherwise, the width factor of window function in the high frequency area is adaptively adjusted according to the value of Fourier spectrum of the fundamental frequency. On this basis, the decision tree based on 6 features is constructed to recognize disturbance signals. Finally, the minimum classification faults rule is designed to get the optimum threshold of each node. The simulation and real signals experiments show that 13 types of disturbances including 5 types of complex disturbances are recognized accurately by the new approach. The new approach has better classification accuracy and noise immunity than other methods such as S-transform , generalized S-transform and Hyperbolic S-transform.
Keywords:power quality   power quality disturbance   S-transform   multiresolution   decision tree
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《哈尔滨工业大学学报》浏览原始摘要信息
点击此处可从《哈尔滨工业大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号