首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进BP神经网络的机床基础部件可再制造性评价模型
引用本文:潘尚峰,卢超,彭一波. 基于改进BP神经网络的机床基础部件可再制造性评价模型[J]. 中国机械工程, 2016, 27(20): 2743
作者姓名:潘尚峰  卢超  彭一波
作者单位:1.清华大学,北京,1000842.中国舰船研究设计中心,武汉,430064
基金项目:国家科技重大专项(2014ZX04014-011)
摘    要:为了利用样本数据准确完成机床基础部件可再制造性评价,提高机床基础部件可再制造性评价预测精度,提出一种采用模拟退火遗传算法优化BP神经网络的机床基础部件可再制造性评价模型。该评价模型以机床基础部件可再制造性经典评价模型评价结果为样本数据,建立机床基础部件可再制造性评价BP神经网络预测模型,采用模拟退火遗传算法优化BP神经网络模型,寻找更优初始网络权值、阈值,以提高收敛速度和避免局部收敛。以一台机床基础部件可再制造性评价为例,验证了基于模拟退火遗传算法优化的BP神经网络评价模型具有更好的预测精度。

关 键 词:可再制造性  综合评价  BP神经网络  模拟退火遗传算法  

Evaluation Model for Machine Tool Basic Parts Remanufacturability Based on Optimized BP Neural Network
Pan Shangfeng,Lu Chao,Peng Yibo. Evaluation Model for Machine Tool Basic Parts Remanufacturability Based on Optimized BP Neural Network[J]. China Mechanical Engineering, 2016, 27(20): 2743
Authors:Pan Shangfeng  Lu Chao  Peng Yibo
Affiliation:1.Tsinghua University,Beijing,1000842.China Ship Development and Design Center,Wuhan,430064
Abstract:To utilize sample data to accomplish the remanufacturability evaluation of the machine tool basic parts, and to improve the prediction accuracy of remanufacturability evaluation of the machine tool basic parts, a BP neural network remanufacturability evaluation model optimized by the simulated annealing algorithm and genetic algorithm was proposed. A BP neural network remanufacturability evaluation prediction model of the machine tool basic parts was built according to the evaluation results of typical remanufacturability evaluation model. The BP neural network evaluation model optimized by the simulated annealing algorithm and genetic algorithm has better initial weights and thresholds to increase the convergence rate and avoid the local convergence. Remanufacturability evaluation of a machine tool basic parts was taken as an example to demonstrate that the remanufacturability evaluation model optimized by simulated annealing algorithm and genetic algorithm has higher prediction accuracy.
Keywords:remanufacturability  comprehensive evaluation  BP neural network  simulated annealing genetic algorithm  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国机械工程》浏览原始摘要信息
点击此处可从《中国机械工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号