首页 | 本学科首页   官方微博 | 高级检索  
     

基于EEMD和MFFOA-SVM滚动轴承故障诊断
引用本文:何青,褚东亮,毛新华. 基于EEMD和MFFOA-SVM滚动轴承故障诊断[J]. 中国机械工程, 2016, 27(9): 1191
作者姓名:何青  褚东亮  毛新华
作者单位:华北电力大学, 北京,102206
基金项目:中央高校基本科研业务费专项资金资助项目(2014XS25,2014MS17)
摘    要:针对滚动轴承发生故障时,振动信号的时域和频域特征都会发生变化的特点,提出了基于集合经验模态分解(EEMD)、改进果蝇优化算法(MFFOA)和支持向量机(SVM)的滚动轴承故障诊断方法。该方法主要是利用EEMD方法对故障信号进行分解,并计算各IMF分量的均方根值和重心频率,以此进行归一化处理得到特征向量。为了提高诊断精度,采用果蝇优化算法优化SVM参数,建立MFFOA-SVM模型,然后对提取的特征向量进行训练与测试,从而识别故障与否及发生点蚀故障的程度。利用该方法对实测信号进行分析与诊断,并与遗传算法的优化结果进行对比,验证了该方法的有效性,说明其具有良好的应用前景。

关 键 词:集合经验模态分解  改进果蝇优化算法  支持向量机  滚动轴承  故障诊断  

Study on Rolling Bearing Fault Diagnosis Based on EEMD and MFFOA-SVM
He Qing,Chu Dongliang,Mao Xinhua. Study on Rolling Bearing Fault Diagnosis Based on EEMD and MFFOA-SVM[J]. China Mechanical Engineering, 2016, 27(9): 1191
Authors:He Qing  Chu Dongliang  Mao Xinhua
Affiliation:North China Electric Power University, Beijing, 102206
Abstract:Both of the time domain and frequency domain of the vibration signals would be changed when rolling bearing faults occured. A rolling bearing fault diagnosis method was proposed based on EEMD, MFFOA and SVM. EEMD was used to decompose the fault signals, and to calculate the root mean square value and frequency of the center of gravity, achieving the normalization processing feature vector. In order to improve the classification accuracy rate, a MFFOA-SVM model was built, and then the feature values were extracted for training and testing, so that it might recognize the faults or not and the degree of pitting corrosion failures. The actual signals were analyzed and diagnosed, and compared with genetic algorithm optimization results, it proves the validity of the method, and the improved method has a good prospect for its applications in rolling bearing diagnosis.
Keywords:ensemble empirical mode decomposition(EEMD)  modified fruit fly optimization algorithm(MFFOA)  support vector machine(SVM)  rolling bearing  fault diagnosis  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国机械工程》浏览原始摘要信息
点击此处可从《中国机械工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号