首页 | 本学科首页   官方微博 | 高级检索  
     

WRSIS系统中稻田田面水和地下排水中氮素的动态变化特征
引用本文:文涛,邵孝侯,李圆圆,徐征,江培福,邱艳,王金兰.WRSIS系统中稻田田面水和地下排水中氮素的动态变化特征[J].水资源保护,2012,28(4):33-37.
作者姓名:文涛  邵孝侯  李圆圆  徐征  江培福  邱艳  王金兰
作者单位:1. 南京市水利规划设计院有限责任公司,江苏南京210006;河海大学水利水电学院,江苏南京210098
2. 河海大学水利水电学院,江苏南京,210098
3. 水利部综合事业局,北京,100053
4. 南京高淳县水务局,江苏南京,211300
基金项目:水利部综合事业局项目(2009财第,公益性行业(水利)科研专项
摘    要:在江苏高淳县WRSIS系统中进行田间试验,对不同氮肥施用量下稻田田面水和地下排水中氮素动态变化特性进行分析。结果表明:施肥1 d后田面水TN和NH4+-N质量浓度值达到最大,随着时间推移,质量浓度迅速下降,施肥7 d后TN质量浓度下降70%~76%,NH4+-N质量浓度下降83.5%~85.5%。田面水中ρ(NH4+-N)/ρ(TN)和ρ(NO3--N)/ρ(TN)具有相似变化规律,先升后降,且ρ(NH4+-N)/ρ(TN)显著大于ρ(NO3--N)/ρ(TN)。地下排水中氮素以NO3--N为主,施肥后NO3--N质量浓度在3.0~19.0 mg/L的范围内;NH4+-N质量浓度较低,整个生育期质量浓度都在1.1 mg/L以下。田面水和地下排水中氮素质量浓度均随着施肥量的增加而增加。施肥7 d内是防止氮素大量流失的关键时期,需要控制排水;同时减少氮肥施用量能显著减少氮素地表流失和地下渗漏损失量。

关 键 词:地下灌溉-排水-湿地综合管理系统(WRSIS)  稻田氮素  施用量  流失量  动态特征
修稿时间:2012/8/28 0:00:00

Characteristics of dynamic change of nitrogen in surface water and underground drainage water in paddy fields in WRSIS
WEN Tao , SHAO Xiao-hou , LI Yuan-yuan , XU Zheng , JIANG Pei-fu , QIU Yan , WANG Jin-lan.Characteristics of dynamic change of nitrogen in surface water and underground drainage water in paddy fields in WRSIS[J].Water Resources Protection,2012,28(4):33-37.
Authors:WEN Tao  SHAO Xiao-hou  LI Yuan-yuan  XU Zheng  JIANG Pei-fu  QIU Yan  WANG Jin-lan
Affiliation:1. Nanjing Water Planning and Designing Institute, Co., Ltd. , Nanfing 210006, China; 2. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China ; 3. Bureau of Comprehensive Development of the Ministry of Water Resources of China, Beijing 100053, China ; 4. Bureau of Water Conservancy of Gaochun County, Nanjing 211300, China )
Abstract:Field experiments were conducted in the wetland reservoir sub-irrigation system (WRSIS) in Gaochun County, Jiangsu Province, in order to study the characteristics of dynamic change of nitrogen in the surface water and underground drainage water in paddy fields with different amounts of N fertilizer. The results show that the concentrations of TN and NH4^+ -N in the surface water reached the maximum values one day after fertilization, and decreased rapidly seven days after fertilization by 70% to 76% and 83.5% to 85.5%, respectively. The rates of p(NH4^+ -N)/ρ(TN) and ρ (NO3^- - N)/ρ (TN) in the surface water had a rising-to-descending trend, and/9(NH4+ -N)/ρ (TN) was. significantly greater than ρ (NO3^- - N)/ρ (TN). NO3^- -N was the main form of N in the underground drainage water, and the concentration ranged from 3.0 to 19.0 mg/L after fertilization. The concentration of NH4^+ -N was very low and its value was lower than 1.1 mg/L throughout the growth period of rice. The concentrations of N both in the surface water and in the underground drainage water increased with the amount of fertilizer. The experimental results show that it is necessary to control drainage within a week after fertilization, which is a crucial period for prevention of large amounts of N loss. Meanwhile, the N loss from the surface runoff and the leakage loss could be significantly reduced by decreasing the use of N fertilizer.
Keywords:wetland reservoir sub-irrigation system  paddy field  amount of fertilizer  nitrogen  loss amount  dynamiccharacteristics
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《水资源保护》浏览原始摘要信息
点击此处可从《水资源保护》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号