首页 | 本学科首页   官方微博 | 高级检索  
     


Absence of fractionation of mercury isotopes during trophic transfer of methylmercury to freshwater fish in captivity
Authors:Kwon Sae Yun  Blum Joel D  Carvan Michael J  Basu Niladri  Head Jessica A  Madenjian Charles P  David Solomon R
Affiliation:Department of Earth and Environmental Sciences, University of Michigan, 1100 N. University Avenue, Ann Arbor, Michigan 48109, United States. saeyunk@umich.edu
Abstract:We performed two controlled experiments to determine the amount of mass-dependent and mass-independent fractionation (MDF and MIF) of methylmercury (MeHg) during trophic transfer into fish. In experiment 1, juvenile yellow perch (Perca flavescens) were raised in captivity on commercial food pellets and then their diet was either maintained on unamended food pellets (0.1 μg/g MeHg) or was switched to food pellets with 1.0 μg/g or 4.0 μg/g of added MeHg, for a period of 2 months. The difference in δ(202)Hg (MDF) and Δ(199)Hg (MIF) between fish tissues and food pellets with added MeHg was within the analytical uncertainty (δ(202)Hg, 0.07 ‰; Δ(199)Hg, 0.06 ‰), indicating no isotope fractionation. In experiment 2, lake trout (Salvelinus namaycush) were raised in captivity on food pellets and then shifted to a diet of bloater (Coregonus hoyi) for 6 months. The δ(202)Hg and Δ(199)Hg of the lake trout equaled the isotopic composition of the bloater after 6 months, reflecting reequilibration of the Hg isotopic composition of the fish to new food sources and a lack of isotope fractionation during trophic transfer. We suggest that the stable Hg isotope ratios in fish can be used to trace environmental sources of Hg in aquatic ecosystems.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号