首页 | 本学科首页   官方微博 | 高级检索  
     

改进的支持向量机算法及其应用
引用本文:彭光金,司海涛,俞集辉,杨蕴华,李世勉,谭柯.改进的支持向量机算法及其应用[J].计算机工程与应用,2011,47(18):218-221.
作者姓名:彭光金  司海涛  俞集辉  杨蕴华  李世勉  谭柯
作者单位:1. 重庆大学,电气工程学院输配电装备及系统安全与新技术国家重点实验室,重庆,400030
2. 重庆大学,电气工程学院输配电装备及系统安全与新技术国家重点实验室,重庆,400030;衢州市电力公司,浙江衢州,324000
3. 重庆市电力公司,重庆,400030
摘    要:支持向量机(SVM)算法应用于具有小样本特征的实际问题时是否能获得到良好的预测效果,取决于能否成功地设置该算法的关键参数,这一瓶颈问题一直阻碍着SVM在具有小样本特性的实际工程中的应用。在分析SVM回归估计方法参数性能的基础上,提出了以自适应粒子群算法(APSO)优化SVM关键参数的改进SVM算法,并以变电工程为背景给出了相应的工程造价预测模型。运用此模型,对某实际变电工程实例进行了造价预测仿真分析,并与传统的支持向量机算法进行比较,结果说明改进的支持向量机算法具有良好的变电工程造价预测精度,且速度较快。

关 键 词:粒子群算法  支持向量机算法  变电工程造价
修稿时间: 

Modification and application of SVM algorithm
PENG Guangjin,SI Haitao,YU Jihui,YANG Yunhua,LI Shimian,TAN Ke.Modification and application of SVM algorithm[J].Computer Engineering and Applications,2011,47(18):218-221.
Authors:PENG Guangjin  SI Haitao  YU Jihui  YANG Yunhua  LI Shimian  TAN Ke
Affiliation:1.State Key Laboratory of Power Transmission Equipment and System Security and New Technology,Chongqing University, Chongqing 400030,China 2.Chongqing Power Company,Chongqing 400030,China 3.Quzhou Power Company,Quzhou,Zhejiang 324000,China
Abstract:SVM(Support Vector Machine),whether it can get a good forecasting effect when used in practical problems with the characters of small-sample is determined by whether the key parameters of the algorithm can be set successfully,this bottleneck problem has been a hindrance to the application of this algorithm in practical problems with the characters of small-sample.Based on analyzing the performance of SVM parameters as a regression estimation method,an improved SVM algorithm with APSO(Adaptive Particle Swarm Optimization) optimizing the parameters of SVM and the relevant engineering cost forecast model on the background of power engineering is proposed.With this model,a practical power engineering cost prediction simulation analysis is carried out.And compared with the traditional SVM algorithm,it proves that the power engi- neering cost prediction accuracy of the improved algorithm is higher and the algorithm has high operation speed.
Keywords:Particle Swarm Optimization(PSO)  Support Vector Machine(SVM)  power engineering cost
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号