首页 | 本学科首页   官方微博 | 高级检索  
     

自适应扩展的简化粒子群优化算法
引用本文:赵志刚,张振文,张福刚. 自适应扩展的简化粒子群优化算法[J]. 计算机工程与应用, 2011, 47(18): 45-47. DOI: 10.3778/j.issn.1002-8331.2011.18.013
作者姓名:赵志刚  张振文  张福刚
作者单位:广西大学 计算机与电子信息学院,南宁 530004
基金项目:国家自然科学基金,广西教育厅科研项目
摘    要:针对基本粒子群优化算法易于陷入局部最优的问题,提出了一种自适应扩展的简化粒子群优化算法。该算法采用去除速度项的简化算法结构,并用所有粒子个体极值的平均值代替每个粒子的个体极值,自适应动态调整加速系数。实验结果表明,算法能够有效避免早熟收敛问题,其全局收敛性能显著提高,收敛速度更快。

关 键 词:粒子群优化算法  局部最优  个体极值  加速系数  
修稿时间: 

Simplified particle swarm optimization algorithm with adaptive extended operator
ZHAO Zhigang,ZHANG Zhenwen,ZHANG Fugang. Simplified particle swarm optimization algorithm with adaptive extended operator[J]. Computer Engineering and Applications, 2011, 47(18): 45-47. DOI: 10.3778/j.issn.1002-8331.2011.18.013
Authors:ZHAO Zhigang  ZHANG Zhenwen  ZHANG Fugang
Affiliation:College of Computer and Electronics Information,Guangxi University,Nanning 530004,China
Abstract:An improved Particle Swarm Optimization(PSO) algorithm is presented based on three methods of improvement in standard PSO to avoid being trapped in local minima.The iteration formula of PSO is changed and simplified by removal of velocity parameter that is unnecessary during the course of evolution.The personal best value of each particle is replaced by the mean value of them of all particles.The acceleration coefficients are adaptively adjusted to improve the search performance of algorithm.The experimental results show that the proposed algorithm not only has great advantages of convergence property over standard PSO and some other modified PSO algorithms,but also avoids effectively being trapped in local minima.
Keywords:Particle Swarm Optimization(PSO)  local minima  personal best value  acceleration coefficients
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号