首页 | 本学科首页   官方微博 | 高级检索  
     


Electrohydrodynamically induced dielectric liquid flow through pure conduction in point/plane geometry
Authors:Atten  P Seyed-Yagoobi  J
Affiliation:LEMD, Univ. Joseph Fourier, Grenoble, France;
Abstract:Mildly polar liquids generally exhibit an ohmic behavior when subjected to electric fields of limited values. The resulting conduction is then associated with heterocharge layers of finite thickness in the vicinity of the electrodes. In the absence of charge injection or induction, a simple conduction model based on the processes of dissociation of a neutral electrolytic species and recombination of the generated ions is presented. This model is first applied to parallel plane electrode geometry to describe the build-up of the heterocharge. Then, the case of point/plane configuration is considered where the effect of Coulomb force is different in the two layers next to the electrodes. A net motion toward the point electrode is predicted to occur. With a rough approximation for the harmonic field, an analysis is presented which leads to an expression for the axial component of the net force exerted on the liquid. A simple static pump is designed and built to experimentally investigate the pressure head generated through pure conduction. Two working fluids (refrigerant R-123 and n-hexane) and two different electrode designs are considered in this study. The experimental results are qualitatively compared to the theoretical predictions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号