首页 | 本学科首页   官方微博 | 高级检索  
     

前馈网络的一种超线性收敛BP学习算法
引用本文:梁久祯,何新贵,黄德双. 前馈网络的一种超线性收敛BP学习算法[J]. 软件学报, 2000, 11(8): 1094-1096
作者姓名:梁久祯  何新贵  黄德双
作者单位:1. 北京航空航天大学计算机科学与工程系,北京,100083
2. 北京系统工程研究所,北京,100101
基金项目:本文研究得到国家自然科学基金(No.69705001)资助.
摘    要:分析传统BP算法存在的缺点,并针对这些缺点提出一种改进的BP学习算法.证明该算法在一定 条件下是超线性收敛的,并且该算法能够克服传统BP算法的某些弊端,算法的计算复杂度与简 单BP算法是同阶的.实验结果说明这种改进的BP算法是高效的、可行的.

关 键 词:前馈神经网络  BP学习算法  收敛性  超线性收敛.
收稿时间:1999-01-11
修稿时间:1999-08-27

Super-Linearly Convergent BP Learning Algorithm for Feedforward Neural Networks
LIANG Jiu-zhen,HE Xin-gui and HUANG De-shuang. Super-Linearly Convergent BP Learning Algorithm for Feedforward Neural Networks[J]. Journal of Software, 2000, 11(8): 1094-1096
Authors:LIANG Jiu-zhen  HE Xin-gui  HUANG De-shuang
Affiliation:LIANG Jiu zhen 1 HE Xin gui 2 HUANG De shuang 2 1(Department of Computer Science and Engineering Beijing University of Aeronautics and Astronautics Beijing 100083) 2(Beijing Institute of System Engineering Beijing 100101)
Abstract:In this paper, some shortages of traditional BP learning algorithm are analyzed. To avoid these shortages, a modified BP learning algorithm is proposed. It is s hown that this algorithm is super-linearly convergent under certain conditions. This algorithm can overcome some shortages of traditional BP learning algorithm , and has the same order of computation complexity as the traditional BP algorit hm. Finally, two computing examples are given. Simulation results illustrate tha t this algorithm is highly effective and practicable.
Keywords:Feedforward neural network   BP learning algorithm   convergence   super-linear c onvergence.
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《软件学报》浏览原始摘要信息
点击此处可从《软件学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号