首页 | 本学科首页   官方微博 | 高级检索  
     

自旋旋转在La(Fe,Al)13超磁致伸缩中的关键作用
作者姓名:宋玉柱  黄荣进  张骥  张善涛  黄清镇  王守国  姜勇  李来风  邢献然  陈骏
作者单位:Beijing Advanced Innovation Center for Materials Genome Engineering;Key Laboratory of Cryogenics;National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering;NIST Center for Neutron Research;School of Materials Science and Engineering
基金项目:supported by the National Natural Science Foundation of China (21825102,22075014 and 22001014);the Fundamental Research Funds for the Central Universities,China(06500162 and 06500145)。
摘    要:磁致伸缩可作为电磁能和机械能之间的高效转换途径,是基础研究以及技术应用等方面重要的材料性能.然而,在其微观成因的理解方面仍然存在挑战,这对磁致伸缩材料的发展非常重要.本文利用原位磁场和温度场下的粉末中子衍射技术首次揭示了自旋旋转对La(Fe,Al)13超磁致伸缩的关键作用. La(Fe,Al)13超磁致伸缩性能是由磁场驱动的倾斜结构磁矩旋转引起的,其中铁磁成分的急剧增加促使晶格内部二十面体伸长,进而产生巨大的磁致伸缩.此外,本文揭示了La(Fe,Al)13精确的倾斜磁结构特征.本研究提供了一种通过磁场诱导自旋旋转途径探索新型磁致伸缩功能材料的策略.

关 键 词:磁致伸缩  二十面体  倾斜结构  电磁能  磁场诱导  磁结构  机械能

The critical role of spin rotation in the giant magnetostriction of La(Fe,Al)13
Authors:Yuzhu Song  Rongjin Huang  Ji Zhang  Shantao Zhang  Qingzhen Huang  Shouguo Wang  Yong Jiang  Laifeng Li  Xianran Xing  Jun Chen
Affiliation:(Beijing Advanced Innovation Center for Materials Genome Engineering,School of Mathematics and Physics,University of Science and Technology Beijing,Beijing 100083,China;Key Laboratory of Cryogenics,Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing 100190,China;National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering,College of Engineering and Applied Science&Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China;NIST Center for Neutron Research,National Institute of Standards and Technology,Gaithersburg MD,20899-6102,USA;School of Materials Science and Engineering,University of Science and Technology Beijing,Beijing 100083,China)
Abstract:As an efficient converter between electromagnetic and mechanical energies, magnetostriction is an intriguing property for not only fundamental studies but also technological applications. However, the understanding of its microscopic origin remains challenging, which is critical for the development of magnetostriction materials. Here, the critical role of spin rotation in the giant magnetostriction of La(Fe,Al)13 is first revealed by the in-situ magnetic and temperature field of neutron powder diffraction. The giant magnetostriction originates from magnetic-field-driven spin moment rotation of canting structure, in which the sharp increase of ferromagnetic component causes the elongation of icosahedron inside of lattice. Furthermore, it is the first time to reveal the accurate canting antiferromagnetic structure in La(Fe,Al)13. The present study provides a new strategy, i.e., the spin rotation, for exploring new magnetostriction functional materials.
Keywords:magnetostriction  magnetic-field-induced spin rotation  magnetic structure  neutron powder diffraction
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号