首页 | 本学科首页   官方微博 | 高级检索  
     


On the interdependency of primary and initial secondary equilibrium paths in sensitivity analysis of elastic structures
Authors:Herbert A. Mang  Gerhard Höfinger  Xin Jia
Affiliation:1. School of Materials and Metallurgy, Northeastern University, Shenyang 110004, PR China;2. Laboratory for Simulation and Modeling of Particulate Systems, School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
Abstract:The scientific motivation for this paper is lack of clarity about the interdependency of primary and initial secondary equilibrium paths in the frame of sensitivity analysis of elastic structures. The investigation of this interdependency comprises of the following four cases: (1) nonlinear primary path, nonlinear stability problem, (2) linear primary path, nonlinear stability problem, (3) nonlinear primary path, linear stability problem, and (4) linear primary path, linear stability problem. The consistently linearized eigenproblem is used for differentiation of two classes of nonlinear stability problems with markedly different characteristics of both the prebuckling and the postbuckling behavior. For one of them, e.g. zero-stiffness postbuckling is impossible. For the other one, which is restricted to a prebuckling regime with axial deformations only, sensitivity analysis of the initial postbuckling behavior either exhibits its continuous improvement or its continuous deterioration, depending on whether the bifurcation point diverges from or converges to the snap-through point. In other words, a monotonic variation of the design parameter cannot result in a non-monotonic change of the initial postbuckling behavior. The practical motivation for this work is to explore the mechanical reasons for qualitatively different modes of transition from imperfection sensitivity to insensitivity in the course of sensitivity analysis for the purpose of improving the postbuckling behavior of structures by means of minor design changes. Results from a numerical investigation corroborate the theoretical findings.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号