首页 | 本学科首页   官方微博 | 高级检索  
     


Prediction of rank deficiency in partition of unity-based methods with plane triangular or quadrilateral meshes
Authors:X.M. An  L.X. Li  G.W. Ma  H.H. Zhang
Affiliation:1. State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Civil Engineering, Tianjin University, Tianjin 300072, China;2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China;3. Department of Civil Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
Abstract:In the partition of unity (PU)-based methods, the global approximation is built by multiplying a partition of unity by local approximations. Within this framework, high-order approximations are achieved by directly adopting high-order polynomials as local approximations, and therefore nodes along sides or inside elements, which are usually adopted in the conventional finite element methods, are no more required. However, the PU-based approximation constructed in this way may suffer from rank deficiency due to the linear dependence of the global degrees of freedom. In this paper, the origin of the rank deficiency in the PU-based approximation space is first dissected at an element level, and then an approach to predict the rank deficiency for a mesh is proposed together with the principle of the increase of rank deficiency. Finally, examples are investigated to validate the present approach. The current work indicates such a fact that the rank deficiency is an unrelated issue to the nullity of the global matrix. It can be resolved in its own manner.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号