首页 | 本学科首页   官方微博 | 高级检索  
     


Large strain and toughness enhancement of poly(dimethyl siloxane) composite films filled with electrospun polyacrylonitrile-graft-poly(dimethyl siloxane) fibres and multi-walled carbon nanotubes
Authors:GM Bayley  M Hedenqvist  PE Mallon
Affiliation:1. Division of Polymer Science, Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa;2. Fibre and Polymer Technology, School of Chemical Science and Engineering, Royal Institute of Technology (KTH), Teknikringen 56-58, 10044 Stockholm, Sweden
Abstract:Unfilled cross-linked poly(dimethyl siloxane) (PDMS) is a weak material and is generally filled with high levels of particulate fillers such as silica, calcium carbonate and carbon black to improve its mechanical properties. The use of fibrous fillers such as electrospun nanofibres and multi-walled carbon nanotubes as fillers for PDMS has not been widely studied. In this study anew copolymer, polyacrylonitrile-graft-poly(dimethyl siloxane) (PAN-g-PDMS), is used as fibrous filler for PDMS. The graft copolymer is electrospun to produce the fibre filler material. It is shown how the PDMS content of the graft copolymer provides increased compatibility with silicone matrices and excellent dispersion of the fibre fillers throughout a silicone matrix. It is also shown that it is possible to include multi-walled carbon nanotubes in the electrospun fibres which are subsequently dispersed in the PDMS matrix. Fibre mats were used in the non-woven and the aligned forms. The differently prepared fibre composites have significantly different mechanical properties. Conventional composites using fibrous fillers usually show increased strength and stiffness but usually with a resultant loss of strain. In the case of the composites produced in this study there is a dramatic improvement in the extensibility of the non-woven PAN-g-PDMS fibre mat filled silicone films of up to 470%.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号