首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of the adhesion force crystal/heat exchanger surface on fouling mitigation
Authors:M F  rster  W Augustin and M Bohnet
Affiliation:

Institut für Verfahrens- und Kerntechnik, Langer Kamp 7, 38106 Braunschweig, Germany

Abstract:The accumulation of unwanted crystalline deposits (fouling) reduces the efficiency of heat exchangers considerably. In order to decrease the cost of fouling two strategies have been developed. The first fouling mitigation strategy is based on the modification of energy and geometry related characteristics of the heat transfer surface to realize an increased duration of the induction period. By means of a DSA (drop shape analysis) measurement device the interaction at the interface crystal/heat transfer surface is determined. The deployment of the fracture energy model and the interfacial defect model relates wetting characteristics to the adhesion phenomenon. Hence, a first estimation of the optimal choice of surface material is realized. Furthermore, the influence of surface topography on interfacial interactions has been analyzed. The second fouling mitigation strategy is based on the adjustment of the hydrodynamic flow conditions using a pulsation technique. Here, single strokes of higher velocity are superimposed on the stationary flow. These strokes shift the equilibrium of forces to an improved removal process. Fouling experiments have proved that pulsation is a powerful tool to mitigate the built-up of fouling layers on heat transfer surfaces.
Keywords:Crystallization fouling  Induction period  Adhesion  Interfacial energy  Topography  Pulsation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号