首页 | 本学科首页   官方微博 | 高级检索  
     


On the Rayleigh surface waves on an anisotropic homogeneous thermoelastic half space
Authors:Stan Chiri??
Affiliation:1. Faculty of Mathematics, Al. I. Cuza University of Ia?i, Blvd. Carol I, no. 11, 700506, Ia?i, Romania
Abstract:In this paper, we consider the propagation of surface waves in half spaces made of anisotropic homogeneous thermoelastic materials. When the thermal dissipative properties of a half space are taken into consideration, the undamped characteristic features of Rayleigh waves do not remain valid. Then, the process is irreversible and the Rayleigh waves are damped in time and dispersive. Here, we show that the Stroh formulation of the problem leads to a first-order linear partial differential system with constant coefficients. The associated characteristic equation (the propagation condition) is an eight degree equation with complex coefficients and, therefore, its solutions are complex numbers. Consequently, the secular equation results to be with complex coefficients, and therefore, the surface wave is damped in time and dispersed. The results are illustrated for the case of an orthotropic homogeneous thermoelastic half space, when an explicit bicubic form of the characteristic equation with complex coefficients is obtained. The analysis of these Rayleigh waves in a homogeneous orthotropic half space is numerically exemplified. Further, in the case of an isotropic homogeneous thermoelastic material, the characteristic equation is solved exactly and the general solution of the first-order differential system follows. On this basis, the Rayleigh-type surface waves are studied, and the dispersion condition is found.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号