首页 | 本学科首页   官方微博 | 高级检索  
     

应用自适应矩估计的快速最小二乘逆时偏移
引用本文:吴丹,吴海莉,李群,张向阳,刘树仁. 应用自适应矩估计的快速最小二乘逆时偏移[J]. 石油地球物理勘探, 2022, 57(2): 386-394. DOI: 10.13810/j.cnki.issn.1000-7210.2022.02.015
作者姓名:吴丹  吴海莉  李群  张向阳  刘树仁
作者单位:1. 中国石油勘探开发研究院西北分院, 甘肃兰州 730030;2. 中国石油天然气集团有限公司物联网重点实验室, 甘肃兰州 730030
基金项目:本项研究受中国石油集团重大专项"油气数字化生产智能控制技术研究"(2021DJ4602)和中国石油国家级科技项目配套项目(2021DQ0509)联合资助。
摘    要:最小二乘逆时偏移(LSRTM)是一种高分辨率和振幅相对保真的地震成像方法,但是该方法往往需要迭代近十次,而每次迭代大约需要两次所有炮逆时偏移(RTM)的计算成本,因此计算量非常大。文中应用深度学习领域中的自适应矩估计方法提高LSRTM的计算效率:每次迭代只采用部分共炮点道集计算梯度,利用动量法对梯度进行修正;考虑梯度的非稳态性,通过均方根传播算法消除照明不足带来的影响。自适应矩估计方法结合了这两种方法的优点,不仅降低了每次迭代的计算量,而且提高了迭代收敛的速度。该方法易于实现、计算效率高、占用内存小,是一种快速有效的梯度预条件方法。自适应矩估计方法不仅可以直接用于LSRTM,也可应用于炮编码的LSRTM。SEG/EAGE盐丘模型数值试验表明,自适应矩估计方法仅需两倍的RTM计算成本就能够获得高精度、高分辨率的成像结果。计算效率的大幅度提升有助于将LSRTM方法推广应用于实际地震数据处理。

关 键 词:最小二乘逆时偏移  自适应矩估计  高分辨率  振幅保真  炮编码  
收稿时间:2021-03-11

Fast least-squares reverse-time migration with adaptive moment estimation
WU Dan,WU Haili,LI Qun,ZHANG Xiangyang,LIU Shuren. Fast least-squares reverse-time migration with adaptive moment estimation[J]. Oil Geophysical Prospecting, 2022, 57(2): 386-394. DOI: 10.13810/j.cnki.issn.1000-7210.2022.02.015
Authors:WU Dan  WU Haili  LI Qun  ZHANG Xiangyang  LIU Shuren
Affiliation:1. Northwest Branch, Research Institute of Petroleum Exploration & Development, PetroChina, Lanzhou, Gansu 730030, China;2. Key Laboratory of Internet of Things, CNPC, Lanzhou, Gansu 730030, China
Abstract:Least-squares reverse-time migration (LSRTM) is a seismic imaging method with high resolution and favorable amplitude fidelity. However, its computational burden is heavy since it often needs to run iterations nearly ten times and takes approximately the computational cost of two full-dataset RTMs for each iteration. Here, we introduce the adaptive moment estimation (Adam) method from the field of deep learning to improve the computational efficiency of LSRTM: At each iteration, only part of the common shot gathers are required to calculate the gradient and the resulting gradient is corrected by the momentum (AdaGrad) method; considering the nonstationary property of the gradient, the root mean square propagation (RMSProp) algorithm is used to eliminate the influence of inadequate illumination. The Adam method, combining the advantages of the AdaGrad method and the RMSProp method, not only reduces the computational burden of each iteration but also improves the convergence speed of the iterations. In addition, this method is straightforward to implement and computationally efficient with a low memory requirement, and thus it is a fast and effective gradient preconditioning method. The A-dam method not only can be applied to LSRTM directly but also is applicable to shot encoding LSRTM. Numerical tests on the SEG/EAGE salt model show that this method can provide a high-precision and high-resolution image at merely the same cost as that of two RTMs. The substantial increase in computational efficiency paves the way for the application of LSRTM in practical seismic data processing.
Keywords:least-squares reverse-time migration  adaptive moment estimation  high resolution  amplitude fidelity  shot encoding  
点击此处可从《石油地球物理勘探》浏览原始摘要信息
点击此处可从《石油地球物理勘探》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号