首页 | 本学科首页   官方微博 | 高级检索  
     


Vascular composition, apoptosis, and expression of angiogenic factors in the corpus luteum during prostaglandin F2alpha-induced regression in sheep
Authors:Vonnahme Kimberly A  Redmer Dale A  Borowczyk Ewa  Bilski Jerzy J  Luther Justin S  Johnson Mary Lynn  Reynolds Lawrence P  Grazul-Bilska Anna T
Affiliation:Department of Animal and Range Sciences, North Dakota State University, Fargo, 58105, USA.
Abstract:Corpora lutea and blood samples were collected from superovulated ewes 0, 4, 8, 12 and 24 h after prostaglandin F(2alpha) (PGF) analog injection on day 10 of the estrous cycle. Changes in vascular cell and fibroblast composition, apoptosis and mRNA expression for several angiogenic factors in the corpus luteum (CL) were determined. While peripheral progesterone concentration decreased at 24 h after PGF injection, CL weight did not change. The area of positive BS-1 lectin staining (endothelial cell marker), smooth muscle cell actin (SMCA; pericyte and SMC marker), collagen type 1 (fibroblast marker), and the rate of cell death changed in luteal tissues after PGF treatment. In association with these cellular changes, mRNA for several angiogenic factors including vascular endothelial growth factor (VEGF) and receptors (Flt and KDR), basic fibroblast growth factor (FGF2) and receptor, angiopoietin (ANGPT) 1 and receptor Tie-2, endothelial nitric oxide synthase (NOS3), and angiotensin II receptor 1 (AT1) were altered. Changes in endothelial cell marker expression were positively correlated with changes in VEGF and NO systems. In addition, changes in mRNA expression for VEGF, Flt and KDR were positively correlated with changes in ANGPT2, Tie-2, and NOS3, indicating a functional relationship. This data demonstrates that after an initial increase, the endothelial component of the vascular bed decreases during PGF-induced luteal regression. However, SMCA expression remained high during luteal regression, potentially indicating a role of pericytes and vascular SMC in luteolysis, likely to regulate tissue remodeling and to maintain the integrity of larger blood vessels. Further, it appears that early regression may increase collagen type 1 production and/or expression by fibroblasts. Expression of angiogenic factors is influenced by PGF-induced luteolysis and may serve to maintain vascular structure in order to aid luteal regression.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号