首页 | 本学科首页   官方微博 | 高级检索  
     


Scalaradial, a dialdehyde-containing marine metabolite that causes an unexpected noncovalent PLA2 Inactivation
Authors:Monti Maria Chiara  Casapullo Agostino  Cavasotto Claudio N  Napolitano Assunta  Riccio Raffaele
Affiliation:Dipartimento di Scienze Farmaceutiche, Via Ponte don Melillo, Università degli Studi di Salerno, 84084, Fisciano SA, Italy.
Abstract:Several marine terpenoids that contain at least one reactive aldehyde group, such as manoalide and its congeners, possess interesting anti-inflammatory activities that are mediated by the covalent inactivation of secretory phospholipase A(2) (sPLA(2)). Scalaradial, a 1,4-dialdehyde marine terpenoid that was isolated from the sponge Cacospongia mollior, is endowed with a relevant anti-inflammatory profile, both in vitro and in vivo, through selective sPLA(2) inhibition. Due to its peculiar dialdehyde structural feature, it has been proposed that scalaradial exerts its enzymatic inactivation by means of an irreversible covalent modification of its target. In the context of our on-going research on anti-PLA(2) natural products and their interaction at a molecular level, we studied scalaradial in an attempt to shed more light on the molecular mechanism of its PLA(2) inhibition. A detailed analysis of the reaction profile between scalaradial and bee venom PLA(2), a model sPLA(2) that shares a high structural homology with the human synovial enzyme, was performed by a combination of spectroscopic techniques, chemical reactions (selective modifications, biomimetic reactions), and classical protein chemistry (such as proteolytic digestion, HPLC and mass spectrometry), along with molecular modeling studies. Unexpectedly, our data clearly indicated the noncovalent forces to be the leading event in the PLA(2) inactivation process; thus, the covalent modification of the enzyme emerges as only a minor side event in the ligand-enzyme interaction. The overall picture might be useful in the design of SLD analogues as new potential anti-inflammatory compounds that target sPLA(2) enzymes.
Keywords:anti‐inflammatory agents  mass spectrometry  molecular modeling  natural products  phospholipase inactivation
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号