首页 | 本学科首页   官方微博 | 高级检索  
     


Detonation Failure Characterization of Homemade Explosives
Authors:Robert S. Janesheski  Lori J. Groven  Steven F. Son
Abstract:Typically characterizing home made explosives (HMEs) requires many large scale experiments, which is prohibitive given the large number of materials in use. A small scale experiment was developed to characterize HMEs such as ammonium nitrate‐fuel oil mixtures. A microwave interferometer is applied to small scale confined transient experiments, yielding time resolved characterization of a failing detonation that is initiated with an ideal explosive booster charge. Experiments were performed with ammonium nitrate and two fuel compositions (diesel fuel and mineral oil). It was observed that the failure dynamics were influenced by factors such as the chemical composition, confiner thickness, and applied shock wave strength. Thin steel walled confiners with 0.71 mm wall thickness experienced detonation failure and decoupling of the shock wave from the reaction zone. Confiners with a wall thickness of 34.9 mm showed a decrease in propagation speed and a steady reactive wave was achieved. Varying the applied shock strength by using an attenuator showed corresponding changes in the initial overdriven reactive wave velocity in the HMEs. The distance to detonation failure was also shown to depend on the attenuator length when thin wall confinement was used. This experimental method is shown to be repeatable and can be performed with little required material (about 2 g). The data obtained could be useful to model development and validation, as well as quantifying detonability of materials.
Keywords:Home made explosives  Ammonium nitrate  Microwave interferometry  Detonation failure  Shockwave
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号