首页 | 本学科首页   官方微博 | 高级检索  
     


Pinhole SPECT imaging: compact projection/backprojection operator for efficient algebraic reconstruction
Authors:Israel-Jost Vincent  Choquet Philippe  Salmon Stéphanie  Blondet Cyrille  Sonnendrücker Eric  Constantinesco André
Affiliation:Service de Biophysique et Médecine Nucléaire, H?pital de Hautepierre, France.
Abstract:We describe the efficient algebraic reconstruction (EAR) method, which applies to cone-beam tomographic reconstruction problems with a circular symmetry. Three independant steps/stages are presented, which use two symmetries and a factorization of the point spread functions (PSFs), each reducing computing times and eventually storage in memory or hard drive. In the case of pinhole single photon emission computed tomography (SPECT), we show how the EAR method can incorporate most of the physical and geometrical effects which change the PSF compared to the Dirac function assumed in analytical methods, thus showing improvements on reconstructed images. We also compare results obtained by the EAR method with a cubic grid implementation of an algebraic method and modeling of the PSF and we show that there is no significant loss of quality, despite the use of a noncubic grid for voxels in the EAR method. Data from a phantom, reconstructed with the EAR method, demonstrate 1.08-mm spatial tomographic resolution despite the use of a 1.5-mm pinhole SPECT device and several applications in rat and mouse imaging are shown. Finally, we discuss the conditions of application of the method when symmetries are broken, by considering the different parameters of the calibration and nonsymmetric physical effects such as attenuation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号