首页 | 本学科首页   官方微博 | 高级检索  
     


Investigation of the deformability properties of fiber reinforced cemented sand
Authors:Moein Ghadakpour  Saman Soleimani Kutanaei
Affiliation:Department of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran
Abstract:In this study, 72 consolidated drained triaxial tests have been carried out to evaluate the effect of relative density, weight ratio of fibers, weight ratio of cement and confining pressure on the deformability properties of specimens made from Babolsar sand, Portland cement type II and polyvinyl alcohol (PVA) fibers. The results of this study show that the stiffness corresponding to 50% of the shear strength increases with the addition of cement. The presence of fibers within the cement specimen reduces stiffness. On the other hand, for uncemented specimen, adding fibers can reduce the stiffness of the specimens by 80% density, while adding fibers increases stiffness for specimens with 50% density. Adding cement to sand increases the secant stiffness at lower strains, but at high strains, cement content does not affect the secant stiffness. For specimens with relative density of 80%, in low strains, adding fibers reduces the secant stiffness. In high strains, the presence of fibers increases the secant stiffness. The distance between the yielding point and failure point increases with increasing confining pressure and fiber content, but adding cement reduces this distance. The yielding point of cemented sample depends on cement content and confining pressure. The inclusion of PVA fibers to the cemented soil increases the energy absorption. The addition of cement increases the energy absorption, but the amount of energy absorption increase is not significant. Moreover, the increase of confining pressure increases the difference in the absorbed energy of the specimens with different relative densities.
Keywords:Fiber  cement  E50  secant stiffness  tangent stiffness  energy absorption
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号