首页 | 本学科首页   官方微博 | 高级检索  
     

一种融合遥感和地面观测资料的雪深空间插值方法
引用本文:王宏伟,黄春林,侯金亮. 一种融合遥感和地面观测资料的雪深空间插值方法[J]. 遥感技术与应用, 2014, 29(6): 993-1000. DOI: 10.11873/j.issn.1004-0323.2014.6.0993
作者姓名:王宏伟  黄春林  侯金亮
作者单位:(1.中国科学院寒区旱区环境与工程研究所,甘肃 兰州730000;2.中国科学院大学,北京100049;3.中国科学院寒区旱区环境与工程研究所黑河遥感试验研究站,甘肃 兰州730000)
基金项目:国家自然科学基金项目(41271358)和中国科学院“百人计划”项目 (29Y127D01)资助。
摘    要:针对积雪观测站点稀少的问题,提出一种考虑海拔影响,能够融合MODIS积雪面积产品和站点观测的雪深空间插值方法,该方法利用去云后MODIS积雪面积产品构建的无积雪“虚拟站点”弥补站点分布不均匀和稀少的不足,利用泛协克里金插值方法考虑海拔对雪深的影响。利用北疆地区50个气象站点的逐日雪深观测资料、逐日MODIS积雪面积产品和AMSR-E被动微波雪水当量和雪深产品,对普通克里金、泛克里金、普通协克里金和泛协克里金插值结果进行了比较研究。研究结果表明:积雪覆盖范围较大时,站点雪深与海拔之间相关系数较大,利用泛协克里金插值结果精度高且稳定;否则利用普通克里金插值精度较高且稳定。通过增加“虚拟站点”,能够提高雪深插值精度,并在一定程度上修正了克里金插值中存在的平滑效应。


关 键 词:雪深  遥感  克里金  空间插值  MODIS  
收稿时间:2013-11-17

A Novel Spatial Interpolation Method for Snow Depth by Integrating Satellite and Ground Observations
Wang Hongwei,Huang Chunlin,Hou Jinliang. A Novel Spatial Interpolation Method for Snow Depth by Integrating Satellite and Ground Observations[J]. Remote Sensing Technology and Application, 2014, 29(6): 993-1000. DOI: 10.11873/j.issn.1004-0323.2014.6.0993
Authors:Wang Hongwei  Huang Chunlin  Hou Jinliang
Affiliation:(1.Cold and Arid Regions Environmental and Engineering Research Institute,;Chinese Academy of Sciences,Lanzhou 730000,China;;2.University of Chinese Academy of Sciences,Beijing 100049,China)
Abstract:For the problem of rare snow observation stations,this paper proposed a new scheme to produce spatial distribution of snow depth on based on different kriging interpolation methods,which can not only consider elevation effects,but also fuse MODIS snow cover products.This scheme uses snow|free pixels in the cloud|removed MODIS snow cover image to build virtual stations with zeros snow depth to compensate for the scarcity and uneven distribution of stations.Additionally,the universal co|kriging interpolation method is used to consider the impact of elevation on snow depth.The daily snow depth observations at 50 meteorological stations in northern Xinjing province are chosen to evaluate the proposed scheme.Four types of kriging methods are also compared such as ordinary kriging,universal kriging,ordinary co|kriging and universal co-kriging.Results show that universal co|kriging can achieve the best performance with a larger snow cover area and a bigger value of correlation coefficient between snow depth and elevation.Otherwise,the best performance is achieved by the ordinary kriging.The added virtual stations can improve the accuracy of interpolation and reduce smoothing effect in kriging interpolation.
Keywords:Snow depth  Remote sensing  Kriging  Spatial interpolation  MODIS  
点击此处可从《遥感技术与应用》浏览原始摘要信息
点击此处可从《遥感技术与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号